Suppr超能文献

疾病基因座置信区间估计中的微卫星与单核苷酸多态性

Microsatellites versus Single-Nucleotide Polymorphisms in confidence interval estimation of disease loci.

作者信息

Papachristou Charalampos, Lin Shili

机构信息

Department of Statistics, Ohio State University, Columbus, 43210, USA.

出版信息

Genet Epidemiol. 2006 Jan;30(1):3-17. doi: 10.1002/gepi.20122.

Abstract

With cost-effective high-throughput Single Nucleotide Polymorphism (SNP) arrays now becoming widely available, it is highly anticipated that SNPs will soon become the choice of markers in whole genome screens. This optimism raises a great deal of interest in assessing whether dense SNP maps offer at least as much information as their microsatellite (MS) counterparts. Factors considered to date include information content, strength of linkage signals, and effect of linkage disequilibrium. In the current report, we focus on investigating the relative merits of SNPs vs. MS markers for disease gene localization. For our comparisons, we consider three novel confidence interval estimation procedures based on confidence set inference (CSI) using affected sib-pair data. Two of these procedures are multipoint in nature, enabling them to capitalize on dense SNPs with limited heterozygosity. The other procedure makes use of markers one at a time (two-point), but is much more computationally efficient. In addition to marker type, we also assess the effects of a number of other factors, including map density and marker heterozygosity, on disease gene localization through an extensive simulation study. Our results clearly show that confidence intervals derived based on the CSI multipoint procedures can place the trait locus in much shorter chromosomal segments using densely saturated SNP maps as opposed to using sparse MS maps. Finally, it is interesting (although not surprising) to note that, should one wish to perform a quick preliminary genome screening, then the two-point CSI procedure would be a preferred, computationally cost-effective choice.

摘要

随着具有成本效益的高通量单核苷酸多态性(SNP)阵列现在变得广泛可用,人们高度期待SNP很快将成为全基因组筛选中标记物的选择。这种乐观情绪引发了人们对评估密集SNP图谱是否至少能提供与微卫星(MS)图谱同样多信息的极大兴趣。迄今为止考虑的因素包括信息含量、连锁信号强度和连锁不平衡的影响。在本报告中,我们专注于研究SNP与MS标记物在疾病基因定位方面的相对优点。为了进行比较,我们考虑了基于使用患病同胞对数据的置信集推断(CSI)的三种新型置信区间估计程序。其中两种程序本质上是多点的,使它们能够利用杂合性有限的密集SNP。另一种程序一次使用一个标记物(两点),但计算效率要高得多。除了标记物类型,我们还通过广泛的模拟研究评估了许多其他因素,包括图谱密度和标记物杂合性,对疾病基因定位的影响。我们的结果清楚地表明,与使用稀疏的MS图谱相比,基于CSI多点程序得出的置信区间能够使用高度饱和的SNP图谱将性状基因座定位在更短的染色体片段中。最后,有趣的是(尽管并不奇怪),如果有人希望进行快速的初步基因组筛选,那么两点CSI程序将是一个首选的、计算成本效益高的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验