Sinha Ritwik, Luo Yuqun
Division of Genetic and Molecular Epidemiology, Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Wolstein Research Building, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
BMC Proc. 2007;1 Suppl 1(Suppl 1):S146. doi: 10.1186/1753-6561-1-s1-s146. Epub 2007 Dec 18.
Construction of precise confidence sets of disease gene locations after initial identification of linked regions can improve the efficiency of the ensuing fine mapping effort. We took the confidence set inference, a framework proposed and implemented using the Mean test statistic (CSI-Mean) and improved the efficiency substantially by using a likelihood ratio test statistic (CSI-MLS). The CSI framework requires knowledge of some disease-model-related parameters. In the absence of prior knowledge of these parameters, a two-step procedure may be employed: 1) the parameters are estimated using a coarse map of markers; 2) CSI-Mean or CSI-MLS are applied to construct the confidence sets of the disease gene locations using a finer map of markers, assuming the estimates from Step 1 for the required parameters. In this article we show that the advantages of CSI-MLS over CSI-Mean, previously demonstrated when the required parameters are known, are preserved in this two-step procedure, using both the simulated and real data contributed to Problems 2 and 3 of Genetic Analysis Workshop 15. In addition, our result suggests that microsatellite data, when available, should be used in Step 1. Also explored in detail is the effect of the absence of parental genotypes on the performance of CSI-MLS.
在初步确定连锁区域后构建疾病基因位置的精确置信集,可以提高后续精细定位工作的效率。我们采用了置信集推断法,这是一种使用均值检验统计量提出并实施的框架(CSI-Mean),并通过使用似然比检验统计量(CSI-MLS)大幅提高了效率。CSI框架需要一些与疾病模型相关的参数知识。在缺乏这些参数的先验知识时,可以采用两步法:1)使用标记的粗略图谱估计参数;2)假设第一步对所需参数的估计,应用CSI-Mean或CSI-MLS使用标记的更精细图谱构建疾病基因位置的置信集。在本文中,我们表明,先前在已知所需参数时所证明的CSI-MLS相对于CSI-Mean的优势,在这个两步法中得以保留,我们使用了遗传分析研讨会15的问题2和问题3的模拟数据和真实数据。此外,我们的结果表明,第一步应使用微卫星数据(如果可用)。还详细探讨了缺乏亲本基因型对CSI-MLS性能的影响。