Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106-7281, USA.
Genet Epidemiol. 2009 Nov;33(7):604-16. doi: 10.1002/gepi.20412.
Intermediate fine mapping has received considerable attention recently, with the goal of providing statistically precise and valid chromosomal regions for fine mapping following initial identification of broad regions that are linked to a disease. The following classes of methods have been proposed and compared in the literature: (1) LOD-support intervals, (2) generalized estimating equations, (3) bootstrap, and (4) confidence set inference framework. These methods provide confidence intervals either with coverage levels deviating from the nominal confidence levels or that are not fully efficient. Here, we propose a novel Bayesian method for constructing such intervals using affected sibling pair data. The susceptibility gene location is treated as a parameter in this method, with a uniform prior. A Metropolis-Hastings algorithm is implemented to sample from the posterior distribution and highest posterior density intervals of the disease gene locations are constructed. Correct coverage levels are maintained by our method. Both simulation studies and an application to a rheumatoid arthritis dataset demonstrate the improved efficiency of the Bayesian intervals compared with existing methods.
近年来,中间精细映射受到了相当多的关注,其目标是在初步确定与疾病相关的广泛区域后,为精细映射提供统计学上精确和有效的染色体区域。以下几类方法已经在文献中提出并进行了比较:(1)LOD-支持区间,(2)广义估计方程,(3)自举法,以及(4)置信集推断框架。这些方法要么提供的置信区间的覆盖水平偏离了名义置信水平,要么不是完全有效的。在这里,我们提出了一种使用受影响的同胞对数据构建此类区间的新的贝叶斯方法。在这种方法中,易感性基因位置被视为参数,并具有均匀先验。采用 Metropolis-Hastings 算法从后验分布中抽样,并构建疾病基因位置的后验密度区间的最高密度区间。我们的方法保持了正确的覆盖水平。模拟研究和对类风湿关节炎数据集的应用都表明,与现有方法相比,贝叶斯区间具有更高的效率。