Buckley Thomas N, Roberts David W
Environmental Biology Group and CRC for Greenhouse Accounting, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
Tree Physiol. 2006 Feb;26(2):129-44. doi: 10.1093/treephys/26.2.129.
We present a new model of tree growth, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is adjusted in each time step to maximize whole-tree net C gain in the next time step. Carbon gain, respiration and the acquisition and transport of substitutable photosynthetic resources (nitrogen, water and light) are modeled on a process basis. The current form of DESPOT simulates a uniform, monospecific, self-thinning stand. This paper describes DESPOT and its general behavior in comparison to published data, and presents an evaluation of the sensitivity of its qualitative predictions by Monte Carlo parameter sensitivity analysis. DESPOT predicts determinate height growth and steady stand-level net primary productivity (NPP), but slow declines in aboveground NPP and leaf area index. Monte Carlo analysis, wherein the model was run repeatedly with randomly different parameter sets, revealed that many parameter sets do not lead to sustainable NPP. Of those that do lead to sustainable growth, the ratios at maturity of net to gross primary productivity and of leaf area to sapwood area are highly conserved.
我们提出了一种新的树木生长模型——DESPOT(推导树木的涌现结构和生理学),在该模型中,碳(C)分配在每个时间步长进行调整,以使下一阶段整棵树的净碳增益最大化。碳增益、呼吸作用以及可替代光合资源(氮、水和光)的获取与运输均基于过程进行建模。DESPOT的当前形式模拟的是一个均匀、单一物种、自我疏伐的林分。本文描述了DESPOT及其与已发表数据相比的一般行为,并通过蒙特卡洛参数敏感性分析对其定性预测的敏感性进行了评估。DESPOT预测了确定的树高生长和稳定的林分水平净初级生产力(NPP),但地上NPP和叶面积指数会缓慢下降。蒙特卡洛分析中,该模型使用随机不同的参数集反复运行,结果表明许多参数集不会导致可持续的NPP。在那些确实导致可持续生长的参数集中,净初级生产力与总初级生产力的成熟比率以及叶面积与边材面积的比率高度保守。