Koch George W, Sillett Stephen C, Antoine Marie E, Williams Cameron B
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA,
Oecologia. 2015 Feb;177(2):321-31. doi: 10.1007/s00442-014-3181-6. Epub 2014 Dec 27.
Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.
随着树木长高而发生的结构和生理变化与叶片气体交换中水力限制的增加有关,但尚不清楚当树木接近其最大尺寸时,叶片水平的限制是否会影响整棵树的生长。我们研究了王桉不同树高范围内叶片生理、叶面积与边材面积比(L/S)以及地上部分年生长量的变化。在61.1 - 92.4米高的个体的树冠上部叶片中,叶片光合能力没有差异。在约60米高、80年树龄的树木的树冠上部叶片中,最大日气孔导度(gs)和日积分气孔导度平均分别比约90米高、300年树龄的树木高36%和34%,在水汽压差(VPD)较高的日子里差异更大。较高树木中更大的气孔调节导致在较宽的VPD范围内,较矮和较高树木的每日最低叶片水势(ΨL)相似。从叶片δ(13)C组成推断,较高树木中光合作用的长期气孔限制也更大。木材的δ(13)C表明,用于为树干和树枝木材生产提供能量的大部分光合作用发生在树冠上部。L/S随树高增加,特别是在考虑了27棵高达99.8米的树木树冠结构中与大小无关的变化之后。尽管较高树木中叶片光合作用的气孔限制更大,但在2006年测量了年生物量增长增量的15棵树木中,总叶面积(L)解释了地上部分年生物量增长变化的95%。我们的结果支持一个理论模型,该模型提出,面对随着树高增加的水力限制,整棵树的生长通过资源权衡最大化,即增加叶面积(L)以最大化光捕获,而不是通过降低叶面积与边材面积比(L/S)来维持气孔导度(gs)。