Suppr超能文献

角膜形状的自动决策树分类

Automated decision tree classification of corneal shape.

作者信息

Twa Michael D, Parthasarathy Srinivasan, Roberts Cynthia, Mahmoud Ashraf M, Raasch Thomas W, Bullimore Mark A

机构信息

College of Optometry, The Ohio State University, Columbus, 43210, USA.

出版信息

Optom Vis Sci. 2005 Dec;82(12):1038-46. doi: 10.1097/01.opx.0000192350.01045.6f.

Abstract

PURPOSE

The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods.

METHODS

The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz-McDonnell index, Schwiegerling's Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method.

RESULTS

Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil.

CONCLUSION

Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems.

摘要

目的

视频角膜照相检查过程中产生的数据量和复杂性给解读带来了挑战。因此,结果通常通过主观模式识别进行定性分析,或者简化为汇总指标的比较。我们描述了决策树归纳法(一种自动机器学习分类方法)的应用,以客观、定量的方式区分正常和圆锥角膜的角膜形状。然后我们将这种方法与其他已知分类方法进行了比较。

方法

用七阶泽尼克多项式对92名受试者的132只正常眼睛和71名被诊断为圆锥角膜的受试者的112只眼睛的角膜表面进行建模。使用C4.5算法生成决策树分类器,并将其分类性能与改良的拉宾诺维茨-麦克唐奈指数、施维格林的Z3指数(Z3)、圆锥角膜预测指数(KPI)、KISA%以及圆锥位置和大小指数进行比较,每种方法都使用推荐的分类阈值。我们还评估了每种分类方法的受试者操作特征(ROC)曲线下的面积。

结果

我们的决策树分类器的表现与其他测试分类器相当或更好:准确率为92%且ROC曲线下的面积为0.97。我们的决策树分类器使用36个泽尼克多项式系数中的4个来减少区分正常和圆锥角膜眼睛所需的信息。被决策树方法选为分类属性的四个表面特征分别是下方高度、矢状深度更大、斜向散光和三叶形。

结论

通过泽尼克多项式对角膜形状进行自动决策树分类是一种准确的定量分类方法,具有可解释性,并且可以从任何能够输出原始高度数据的仪器平台生成。这种模式分类方法可扩展到其他分类问题。

相似文献

1
Automated decision tree classification of corneal shape.
Optom Vis Sci. 2005 Dec;82(12):1038-46. doi: 10.1097/01.opx.0000192350.01045.6f.
2
KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus.
J Cataract Refract Surg. 1999 Oct;25(10):1327-35. doi: 10.1016/s0886-3350(99)00195-9.
3
Detection of subclinical keratoconus using an automated decision tree classification.
Am J Ophthalmol. 2013 Aug;156(2):237-246.e1. doi: 10.1016/j.ajo.2013.03.034. Epub 2013 Jun 7.
5
Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data.
Ophthalmology. 2012 Nov;119(11):2231-8. doi: 10.1016/j.ophtha.2012.06.005. Epub 2012 Aug 11.
6
Evaluation of corneal elevation, pachymetry and keratometry in keratoconic eyes with respect to the stage of Amsler-Krumeich classification.
Br J Ophthalmol. 2014 Apr;98(4):459-63. doi: 10.1136/bjophthalmol-2013-304132. Epub 2014 Jan 23.
8
A novel zernike application to differentiate between three-dimensional corneal thickness of normal corneas and corneas with keratoconus.
Am J Ophthalmol. 2015 Sep;160(3):453-462.e2. doi: 10.1016/j.ajo.2015.06.001. Epub 2015 Jun 9.
9
Mean curvature mapping for detection of corneal shape abnormality.
IEEE Trans Med Imaging. 2005 Mar;24(3):424-8. doi: 10.1109/tmi.2004.843192.

引用本文的文献

2
Deep Learning Algorithm for Keratoconus Detection from Tomographic Maps and Corneal Biomechanics: A Diagnostic Study.
J Curr Ophthalmol. 2024 Oct 16;36(1):46-53. doi: 10.4103/joco.joco_18_24. eCollection 2024 Jan-Mar.
3
TGF-β-Based Therapies for Treating Ocular Surface Disorders.
Cells. 2024 Jun 26;13(13):1105. doi: 10.3390/cells13131105.
4
Utility of artificial intelligence in the diagnosis and management of keratoconus: a systematic review.
Front Ophthalmol (Lausanne). 2024 May 17;4:1380701. doi: 10.3389/fopht.2024.1380701. eCollection 2024.
5
KeratoEL: Detection of keratoconus using corneal parameters with ensemble learning.
Health Sci Rep. 2024 Jun 30;7(7):e2202. doi: 10.1002/hsr2.2202. eCollection 2024 Jul.
6
Potential applications of artificial intelligence in image analysis in cornea diseases: a review.
Eye Vis (Lond). 2024 Mar 7;11(1):10. doi: 10.1186/s40662-024-00376-3.
7
Artificial intelligence in cornea and ocular surface diseases.
Saudi J Ophthalmol. 2023 Sep 16;37(3):179-184. doi: 10.4103/sjopt.sjopt_52_23. eCollection 2023 Jul-Sep.
8
Artificial intelligence for detecting keratoconus.
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.
9
Application of thermal imaging combined with machine learning for detecting the deterioration of the cassava root.
Heliyon. 2023 Sep 29;9(10):e20559. doi: 10.1016/j.heliyon.2023.e20559. eCollection 2023 Oct.
10
Management of keratoconus: an updated review.
Front Med (Lausanne). 2023 Jun 20;10:1212314. doi: 10.3389/fmed.2023.1212314. eCollection 2023.

本文引用的文献

1
Preliminary results of neural networks and zernike polynomials for classification of videokeratography maps.
Optom Vis Sci. 2005 Feb;82(2):151-8. doi: 10.1097/01.opx.0000153193.41554.a1.
2
Standards for reporting the optical aberrations of eyes.
J Refract Surg. 2002 Sep-Oct;18(5):S652-60. doi: 10.3928/1081-597X-20020901-30.
3
Between-eye asymmetry in keratoconus.
Cornea. 2002 Oct;21(7):671-9. doi: 10.1097/00003226-200210000-00008.
4
Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images.
Breast Cancer Res Treat. 2001 Mar;66(1):51-7. doi: 10.1023/a:1010676701382.
5
Automated keratoconus detection using the EyeSys videokeratoscope.
J Cataract Refract Surg. 2000 May;26(5):675-83. doi: 10.1016/s0886-3350(00)00303-5.
6
Keratoconus detection with the KISA% method-another view.
J Cataract Refract Surg. 2000 Apr;26(4):472-4. doi: 10.1016/s0886-3350(00)00384-9.
7
Decision tree induction in the diagnosis of otoneurological diseases.
Med Inform Internet Med. 1999 Oct-Dec;24(4):277-89. doi: 10.1080/146392399298302.
8
KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus.
J Cataract Refract Surg. 1999 Oct;25(10):1327-35. doi: 10.1016/s0886-3350(99)00195-9.
9
Ocular predictors of the onset of juvenile myopia.
Invest Ophthalmol Vis Sci. 1999 Aug;40(9):1936-43.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验