Suppr超能文献

使用支持向量机通过地形和断层扫描数据检测圆锥角膜和亚临床圆锥角膜。

Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data.

机构信息

Muscat Eye Laser Center, Muscat, Oman.

出版信息

Ophthalmology. 2012 Nov;119(11):2231-8. doi: 10.1016/j.ophtha.2012.06.005. Epub 2012 Aug 11.

Abstract

PURPOSE

To define a new classification method for the diagnosis of keratoconus based on corneal measurements provided by a Scheimpflug camera combined with Placido corneal topography (Sirius, CSO, Florence, Italy).

DESIGN

Retrospective case series.

PARTICIPANTS

We analyzed the examinations of 877 eyes with keratoconus, 426 eyes with subclinical keratoconus, 940 eyes with a history of corneal surgery (defined as abnormal), and 1259 healthy control eyes.

METHODS

For each group, eyes were divided into a training and a validation set. A support vector machine (SVM) was used to analyze the corneal measurements and classify the eyes into the 4 groups of participants. The classifier was trained to consider the indices obtained from both the anterior and posterior corneal surfaces or only from the anterior corneal surface.

MAIN OUTCOME MEASURES

Symmetry index of front and back corneal curvature, best fit radius of the front corneal surface, Baiocchi Calossi Versaci front index (BCV(f)) and BCV back index (BCV(b)), root mean square of front and back corneal surface higher order aberrations, and thinnest corneal point were analyzed. The diagnostic performance of the classifier was evaluated.

RESULTS

The accuracy of the classifier was excellent both with and without the data generated from the posterior corneal surface and corneal thickness because the number of true predictions was greater than 95% and 93%, respectively, in all classes. Precision improved most when posterior corneal surface data were included, especially in cases of subclinical keratoconus. Using the data from both anterior and posterior corneal surfaces and pachymetry allowed the SVM to increase its sensitivity from 89.3% to 96.0% in abnormal eyes, 92.8% to 95.0% in eyes with keratoconus, 75.2% to 92.0% in eyes with subclinical keratoconus, and 93.1% to 97.2% in normal eyes.

CONCLUSIONS

The classification algorithm showed high accuracy, precision, sensitivity, and specificity in discriminating among abnormal eyes, eyes with keratoconus or subclinical keratoconus, and normal eyes. Including the posterior corneal surface and thickness parameters markedly improved the sensitivity in the diagnosis of subclinical keratoconus. Classification may be particularly useful in excluding eyes with early signs of corneal ectasia when screening patients for excimer laser surgery.

摘要

目的

基于 Scheimpflug 相机联合 Placido 角膜地形图(Sirius,CSO,佛罗伦萨,意大利)提供的角膜测量值,定义一种用于圆锥角膜诊断的新分类方法。

设计

回顾性病例系列。

参与者

我们分析了 877 只圆锥角膜眼、426 只亚临床圆锥角膜眼、940 只角膜手术史眼(定义为异常)和 1259 只正常对照眼的检查结果。

方法

对于每组,将眼睛分为训练集和验证集。使用支持向量机(SVM)分析角膜测量值,并将眼睛分为 4 组参与者。分类器经过训练,可以考虑从前、后角膜表面获得的指标,或仅从前角膜表面获得的指标。

主要观察指标

前、后角膜曲率的对称性指数、前角膜表面最佳拟合半径、Baiocchi Calossi Versaci 前指数(BCV(f))和 BCV 后指数(BCV(b))、前、后角膜表面高阶像差均方根和最薄角膜点。评估分类器的诊断性能。

结果

无论是否包含后角膜表面和角膜厚度数据,分类器的准确率都非常高,因为在所有类别中,真实预测的数量均大于 95%和 93%。当包含后角膜表面数据时,精度提高最多,尤其是在亚临床圆锥角膜病例中。使用前、后角膜表面和角膜厚度数据,SVM 可将异常眼的灵敏度从 89.3%提高到 96.0%,圆锥角膜眼的灵敏度从 92.8%提高到 95.0%,亚临床圆锥角膜眼的灵敏度从 75.2%提高到 92.0%,正常眼的灵敏度从 93.1%提高到 97.2%。

结论

分类算法在区分异常眼、圆锥角膜或亚临床圆锥角膜眼以及正常眼方面具有很高的准确性、精度、灵敏度和特异性。包括后角膜表面和厚度参数可显著提高亚临床圆锥角膜的诊断灵敏度。在对患者进行准分子激光手术筛选时,分类可能特别有助于排除角膜扩张早期迹象的眼睛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验