Suppr超能文献

使用递归神经网络预测生物途径稳健性的崩溃点。

Prediction of debacle points for robustness of biological pathways by using recurrent neural networks.

作者信息

Kitakaze Hironori, Matsuno Hiroshi, Ikeda Nobuhiko, Miyano Satoru

机构信息

Oshima College of Maritime Technology, 1091-1 Oshima-cho, Oshima-gun, Yamaguchi 742-2193, Japan.

出版信息

Genome Inform. 2005;16(1):192-202.

Abstract

Living organisms have ingenious control mechanisms in which many molecular interactions work for keeping their normal activities against disturbances inside and outside of them. However, at the same time, the control mechanism has debacle points at which the stability can be broken easily. This paper proposes a new method which uses recurrent neural network for predicting debacle points in an hybrid functional Petri net model of a biological pathway. Evaluation on an apoptosis signaling pathway indicates that the rates of 96.5 % of debacle points and 65.5 % of non-debacle points can be predicted by the proposed method.

摘要

生物有机体拥有巧妙的控制机制,其中许多分子相互作用协同工作,以维持其正常活动,抵御内外干扰。然而,与此同时,这种控制机制存在崩溃点,在这些点上稳定性很容易被打破。本文提出了一种新方法,该方法利用递归神经网络在生物途径的混合功能Petri网模型中预测崩溃点。对细胞凋亡信号通路的评估表明,所提出的方法能够预测96.5%的崩溃点和65.5%的非崩溃点的发生率。

相似文献

2
Model validation of biological pathways using Petri nets--demonstrated for apoptosis.
Biosystems. 2004 Jul;75(1-3):15-28. doi: 10.1016/j.biosystems.2004.03.003.
3
Modeling and simulation in signal transduction pathways: a systems biology approach.
Biochimie. 2006 Mar-Apr;88(3-4):277-83. doi: 10.1016/j.biochi.2005.08.006. Epub 2005 Sep 22.
7
Bridge and brick network motifs: identifying significant building blocks from complex biological systems.
Artif Intell Med. 2007 Oct;41(2):117-27. doi: 10.1016/j.artmed.2007.07.006. Epub 2007 Sep 7.
9
Systems analyses characterize integrated functions of biochemical networks.
Trends Biochem Sci. 2006 May;31(5):284-91. doi: 10.1016/j.tibs.2006.03.007. Epub 2006 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验