Suppr超能文献

Regulation of mesangial cell cyclooxygenase synthesis by cytokines and glucocorticoids.

作者信息

Coyne D W, Nickols M, Bertrand W, Morrison A R

机构信息

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

出版信息

Am J Physiol. 1992 Jul;263(1 Pt 2):F97-102. doi: 10.1152/ajprenal.1992.263.1.F97.

Abstract

The cytokines, interleukin-1 (IL-1) and tumor necrosis factor (TNF), potently induce prostaglandin formation in glomerular mesangial cells. Mechanisms by which these cytokines stimulate prostaglandin formation vary among cell types. We investigated whether alterations in phospholipase A2 (PLA2) or cyclooxygenase (COX) mass and activity contribute to the changes in mesangial cell prostaglandin production. These cytokines induced COX activity and mass in a time-dependent manner, which paralleled prostaglandin production. IL-1 increased COX mass approximately threefold by 24 h. TNF had a much smaller effect, although it appeared to be additive with IL-1. IL-1-induced COX mass was maintained at an increased level for at least 48 h. The glucocorticoid dexamethasone (DEX) virtually abolished prostaglandin production and blocked cytokine induction of COX activity and mass. DEX did not reduce COX activity or mass below the basal, serum-fed levels, however. By utilizing stable isotope methods, we could demonstrate that IL-1 increased free arachidonate levels, implying new PLA2 synthesis over a time course that was maximal at 6 h and was cycloheximide and actinomycin D sensitive. These data demonstrate that the cytokines IL-1 and TNF enhance synthesis of COX and PLA2, contributing to increased prostaglandin production. Cytokine-stimulated prostaglandin production ceases when cells are also treated with DEX, although control levels of COX activity and mass remain. This occurs because DEX inhibits the IL-1-induced enhanced arachidonate release.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验