文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Estimation of false discovery proportion under general dependence.

作者信息

Pawitan Yudi, Calza Stefano, Ploner Alexander

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

出版信息

Bioinformatics. 2006 Dec 15;22(24):3025-31. doi: 10.1093/bioinformatics/btl527. Epub 2006 Oct 17.


DOI:10.1093/bioinformatics/btl527
PMID:17046978
Abstract

MOTIVATION: Wide-scale correlations between genes are commonly observed in gene expression data, due to both biological and technical reasons. These correlations increase the variability of the standard estimate of the false discovery rate (FDR). We highlight the false discovery proportion (FDP, instead of the FDR) as the suitable quantity for assessing differential expression in microarray data, demonstrate the deleterious effects of correlation on FDP estimation and propose an improved estimation method that accounts for the correlations. METHODS: We analyse the variation pattern of the distribution of test statistics under permutation using the singular value decomposition. The results suggest a latent FDR model that accounts for the effects of correlation, and is statistically closer to the FDP. We develop a procedure for estimating the latent FDR (ELF) based on a Poisson regression model. RESULTS: For simulated data based on the correlation structure of real datasets, we find that ELF performs substantially better than the standard FDR approach in estimating the FDP. We illustrate the use of ELF in the analysis of breast cancer and lymphoma data. AVAILABILITY: R code to perform ELF is available in http://www.meb.ki.se/~yudpaw.

摘要

相似文献

[1]
Estimation of false discovery proportion under general dependence.

Bioinformatics. 2006-12-15

[2]
Multidimensional local false discovery rate for microarray studies.

Bioinformatics. 2006-3-1

[3]
Bias in the estimation of false discovery rate in microarray studies.

Bioinformatics. 2005-10-15

[4]
Unequal group variances in microarray data analyses.

Bioinformatics. 2008-5-1

[5]
Quick calculation for sample size while controlling false discovery rate with application to microarray analysis.

Bioinformatics. 2007-3-15

[6]
Practical FDR-based sample size calculations in microarray experiments.

Bioinformatics. 2005-8-1

[7]
A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data.

Bioinformatics. 2005-12-1

[8]
Robust estimation of the false discovery rate.

Bioinformatics. 2006-8-15

[9]
Empirical Bayes screening of many p-values with applications to microarray studies.

Bioinformatics. 2005-5-1

[10]
Exploiting sample variability to enhance multivariate analysis of microarray data.

Bioinformatics. 2007-10-15

引用本文的文献

[1]
Beware of counter-intuitive levels of false discoveries in datasets with strong intra-correlations.

Genome Biol. 2025-8-18

[2]
Exact Integral Formulas for False Discovery Rate and the Variance of False Discovery Proportion.

J Proteome Res. 2024-6-7

[3]
Mixture prior for sparse signals with dependent covariance structure.

PLoS One. 2023

[4]
fdrci: FDR confidence interval selection and adjustment for large-scale hypothesis testing.

Bioinform Adv. 2022-6-13

[5]
Identifying and Assessing Interesting Subgroups in a Heterogeneous Population.

Biomed Res Int. 2015

[6]
Identification of significant features in DNA microarray data.

Wiley Interdiscip Rev Comput Stat. 2013-7

[7]
Empirical null distribution based modeling of multi-class differential gene expression detection.

J Appl Stat. 2013-2-1

[8]
Sources of variation in false discovery rate estimation include sample size, correlation, and inherent differences between groups.

BMC Bioinformatics. 2012-8-24

[9]
Genome-wide association studies and the genetic dissection of complex traits.

Am J Hematol. 2009-8

[10]
Comments on the analysis of unbalanced microarray data.

Bioinformatics. 2009-6-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索