Suppr超能文献

Effect of graded hyperventilation on cerebral metabolism in a cisterna magna blood injection model of subarachnoid hemorrhage in rats.

作者信息

Ma Xiaodong, Bay-Hansen Rikke, Hauerberg John, Knudsen Gitte Moos, Olsen Niels Vidiendal, Juhler Marianne

机构信息

Department of Neurosurgery, Neuroscience Center, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.

出版信息

J Neurosurg Anesthesiol. 2006 Jan;18(1):18-23. doi: 10.1097/01.ana.0000186523.96425.e6.

Abstract

In subarachnoid hemorrhage (SAH) with cerebrovascular instability, hyperventilation may induce a risk of inducing or aggravating cerebral ischemia. We measured cerebral blood flow (CBF) and cerebral metabolic rates of oxygen (CMRO2), glucose (CMRglc), and lactate (CMRlac) at different PaCO2 levels after experimental SAH in rats (injection of 0.07 mL of autologous blood into the cisterna magna). Four groups of Sprague-Dawley male rats were studied at predetermined PaCO2 levels: group A: normocapnia (5.01-5.66 kPa [38.0-42.0 mm Hg]); group B: slight hyperventilation (4.34-5.00 kPa [32.5-37.5 mm Hg]); group C: moderate hyperventilation (3.67-4.33 kPa [27.5-32.4 mm Hg]); group D: profound hyperventilation (3.00-3.66 kPa [22.5-27.4 mm Hg]). Each of the four groups included eight rats with SAH and eight sham-operated controls. CBF was determined by the intracarotid Xe method; CMRo2, CMRglc, and CMRlac were obtained by cerebral arteriovenous differences. In both SAH rats and controls, hyperventilation decreased CBF in proportion to the decrement in PaCO2 without affecting either CMRO2, CMRglc, or CMRlac. In groups C and D, CBF decreased by 20%-35%, but CMRs were maintained by a compensatory increase in oxygen extraction fraction (OEF). The results show that even profound hyperventilation in this model of SAH is associated with an adequate increase in OEF so that CMRs of oxygen, glucose, and lactate remain similar to levels observed in normocapnic conditions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验