Suppr超能文献

使用倾向评分减少椎体骨折比值比的抽样偏差。

Reduction of sampling bias of odds ratios for vertebral fractures using propensity scores.

作者信息

Lu Y, Jin H, Chen M-H, Glüer C C

机构信息

Department of Radiology, University of California, San Francisco, CA 94143-0946, USA.

出版信息

Osteoporos Int. 2006;17(4):507-20. doi: 10.1007/s00198-005-0021-x. Epub 2005 Dec 21.

Abstract

INTRODUCTION

Assessment of the predictive power of a newly introduced diagnostic technique with regard to fracture risk is frequently limited by the enormous costs and long time periods required for prospective studies. A preliminary estimate of predictive power usually relies on cross-sectional case-control studies in which bone measurements of normal and fractured subjects are compared. The measured discriminatory power is taken as an estimate of predictive power. Because of possible sample selection bias, study participants may have different bone mineral density (BMD) values, and fractured patients may have fractures of different severity levels. The same diagnostic techniques for the measured discriminatory power, expressed as odds ratios, will differ among studies with different patient and control populations.

METHODS

In this paper, we propose a weighted logistic regression approach to adjust the odds ratio in order to reduce the effect of sampling bias. The weight is derived from age, deformity severity, BMD, and the interactions of these, using the propensity score theory and reference population data.

RESULTS

Simulation examples using data from the Osteoporosis and Ultrasound Study (OPUS) demonstrate that such a procedure can effectively reduce the estimation bias of odds ratios introduced by sampling differences, such as for dual x-ray absorptiometry (DXA) scans of the spine and hip as well as various quantitative ultrasound techniques. The derived estimated odds ratios are substantially less biased, and the corresponding 95% confidence intervals contain the true odds ratios from the population data.

CONCLUSIONS

We conclude that a statistical correction procedure based on propensity scores and weighted logistic regression can effectively reduce the effect of sampling bias on the odds ratios calculated from cross-sectional case-control studies. For a new diagnostic technique, hip BMD and deformity severity information are necessary and likely sufficient to derive the propensity scores required to adjust the measured standardized odds ratios.

摘要

引言

评估一种新引入的诊断技术对骨折风险的预测能力,常常受到前瞻性研究所需的巨大成本和长时间周期的限制。预测能力的初步估计通常依赖于横断面病例对照研究,在这些研究中,对正常受试者和骨折受试者的骨测量结果进行比较。所测量的鉴别能力被用作预测能力的估计值。由于可能存在样本选择偏差,研究参与者可能具有不同的骨矿物质密度(BMD)值,并且骨折患者可能具有不同严重程度的骨折。对于以比值比表示的所测量的鉴别能力,相同的诊断技术在不同患者和对照人群的研究中会有所不同。

方法

在本文中,我们提出一种加权逻辑回归方法来调整比值比,以减少抽样偏差的影响。权重是根据倾向得分理论和参考人群数据,从年龄、畸形严重程度、BMD以及它们之间的相互作用得出的。

结果

使用来自骨质疏松症与超声研究(OPUS)的数据进行的模拟示例表明,这样的程序可以有效减少由抽样差异引入的比值比估计偏差,例如对于脊柱和髋部的双能X线吸收测定法(DXA)扫描以及各种定量超声技术。所推导的估计比值比偏差显著更小,并且相应的95%置信区间包含来自总体数据的真实比值比。

结论

我们得出结论,基于倾向得分和加权逻辑回归的统计校正程序可以有效减少抽样偏差对横断面病例对照研究计算出的比值比的影响。对于一种新的诊断技术,髋部BMD和畸形严重程度信息是必要的,并且可能足以得出调整所测量的标准化比值比所需的倾向得分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验