Suppr超能文献

在因果治疗效果估计中通过倾向得分进行分层和加权:一项比较研究。

Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study.

作者信息

Lunceford Jared K, Davidian Marie

机构信息

Merck Research Laboratories, RY34-A316, P.O. Box 2000, Rahway, NJ 07065-0900, USA.

出版信息

Stat Med. 2004 Oct 15;23(19):2937-60. doi: 10.1002/sim.1903.

Abstract

Estimation of treatment effects with causal interpretation from observational data is complicated because exposure to treatment may be confounded with subject characteristics. The propensity score, the probability of treatment exposure conditional on covariates, is the basis for two approaches to adjusting for confounding: methods based on stratification of observations by quantiles of estimated propensity scores and methods based on weighting observations by the inverse of estimated propensity scores. We review popular versions of these approaches and related methods offering improved precision, describe theoretical properties and highlight their implications for practice, and present extensive comparisons of performance that provide guidance for practical use.

摘要

从观察性数据中进行具有因果解释的治疗效果估计很复杂,因为治疗暴露可能与个体特征相混淆。倾向得分,即基于协变量的治疗暴露概率,是两种调整混杂因素方法的基础:一种是基于按估计倾向得分的分位数对观察值进行分层的方法,另一种是基于用估计倾向得分的倒数对观察值进行加权的方法。我们回顾了这些方法的流行版本以及提供更高精度的相关方法,描述了理论特性并强调它们对实践的影响,还进行了广泛的性能比较以为实际应用提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验