Dresbach Thomas, Torres Viviana, Wittenmayer Nina, Altrock Wilko D, Zamorano Pedro, Zuschratter Werner, Nawrotzki Ralph, Ziv Noam E, Garner Craig C, Gundelfinger Eckart D
Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany.
J Biol Chem. 2006 Mar 3;281(9):6038-47. doi: 10.1074/jbc.M508784200. Epub 2005 Dec 21.
Neurotransmitter release from presynaptic nerve terminals is restricted to specialized areas of the plasma membrane, so-called active zones. Active zones are characterized by a network of cytoplasmic scaffolding proteins involved in active zone generation and synaptic transmission. To analyze the modes of biogenesis of this cytomatrix, we asked how Bassoon and Piccolo, two prototypic active zone cytomatrix molecules, are delivered to nascent synapses. Although these proteins may be transported via vesicles, little is known about the importance of a vesicular pathway and about molecular determinants of cytomatrix molecule trafficking. We found that Bassoon and Piccolo co-localize with markers of the trans-Golgi network in cultured neurons. Impairing vesicle exit from the Golgi complex, either using brefeldin A, recombinant proteins, or a low temperature block, prevented transport of Bassoon out of the soma. Deleting a newly identified Golgi-binding region of Bassoon impaired subcellular targeting of recombinant Bassoon. Overexpressing this region to specifically block Golgi binding of the endogenous protein reduced the concentration of Bassoon at synapses. These results suggest that, during the period of bulk synaptogenesis, a primordial cytomatrix assembles in a trans-Golgi compartment. They further indicate that transport via Golgi-derived vesicles is essential for delivery of cytomatrix proteins to the synapse. Paradigmatically this establishes Golgi transit as an obligatory step for subcellular trafficking of distinct cytoplasmic scaffolding proteins.
神经递质从突触前神经末梢的释放局限于质膜的特定区域,即所谓的活性区。活性区的特征是由参与活性区形成和突触传递的细胞质支架蛋白网络构成。为了分析这种细胞基质的生物发生模式,我们研究了巴松管蛋白和短笛蛋白这两种典型的活性区细胞基质分子是如何被输送到新生突触的。尽管这些蛋白质可能通过囊泡运输,但关于囊泡途径的重要性以及细胞基质分子运输的分子决定因素却知之甚少。我们发现,在培养的神经元中,巴松管蛋白和短笛蛋白与反式高尔基体网络的标记物共定位。使用布雷菲德菌素A、重组蛋白或低温阻滞来损害囊泡从高尔基体复合体的排出,会阻止巴松管蛋白从胞体中运输出去。删除新发现的巴松管蛋白的高尔基体结合区域会损害重组巴松管蛋白的亚细胞靶向定位。过度表达该区域以特异性阻断内源性蛋白的高尔基体结合,会降低突触处巴松管蛋白的浓度。这些结果表明,在大量突触形成期间,一种原始的细胞基质在反式高尔基体区室中组装。它们进一步表明,通过高尔基体衍生囊泡的运输对于将细胞基质蛋白输送到突触至关重要。典型地,这确立了高尔基体转运是不同细胞质支架蛋白亚细胞运输的一个必要步骤。