Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
J Neurosci. 2012 Nov 28;32(48):17048-58. doi: 10.1523/JNEUROSCI.3267-12.2012.
Neuronal communication depends on the precisely orchestrated release of neurotransmitter at specialized sites called active zones (AZs). A small number of scaffolding and cytoskeletal proteins comprising the cytomatrix of the active zone (CAZ) are thought to organize the architecture and functional properties of AZs. The majority of CAZ proteins are evolutionarily conserved, underscoring the fundamental similarities in neurotransmission at all synapses. However, core CAZ proteins Piccolo and Bassoon have long been believed exclusive to vertebrates, raising intriguing questions about the conservation of the molecular mechanisms that regulate presynaptic properties. Here, we present the identification of a piccolo-rim-related gene in invertebrates, together with molecular phylogenetic analyses that indicate the encoded proteins may represent Piccolo orthologs. In accordance, we find that the Drosophila homolog, Fife, is neuronal and localizes to presynaptic AZs. To investigate the in vivo function of Fife, we generated a deletion of the fife locus. We find that evoked neurotransmitter release is substantially decreased in fife mutants and loss of fife results in motor deficits. Through morphological analysis of fife synapses, we identify underlying AZ abnormalities including pervasive presynaptic membrane detachments and reduced synaptic vesicle clustering. Our data demonstrate the conservation of a Piccolo-related protein in invertebrates and identify critical roles for Fife in regulating AZ structure and function. These findings suggest the CAZ is more conserved than previously thought, and open the door to a more complete understanding of how CAZ proteins regulate presynaptic structure and function through genetic studies in simpler model systems.
神经元通讯依赖于在称为活性区 (AZ) 的特化部位精确协调地释放神经递质。一小部分构成活性区细胞基质 (CAZ) 的支架和细胞骨架蛋白被认为组织 AZ 的结构和功能特性。大多数 CAZ 蛋白在进化上是保守的,这突显了所有突触中神经传递的基本相似性。然而,核心 CAZ 蛋白 Piccolo 和 Bassoon 长期以来被认为仅存在于脊椎动物中,这就提出了关于调节突触前特性的分子机制保守性的有趣问题。在这里,我们在无脊椎动物中鉴定了一个与 Piccolo 边缘相关的基因,以及分子系统发育分析表明,编码的蛋白质可能代表 Piccolo 直系同源物。相应地,我们发现果蝇同源物 Fife 是神经元,并定位于突触前 AZ。为了研究 Fife 的体内功能,我们生成了 fife 基因座的缺失。我们发现,fife 突变体中诱发的神经递质释放显著减少,并且 fife 的缺失导致运动缺陷。通过 fife 突触的形态分析,我们确定了潜在的 AZ 异常,包括普遍的突触前膜分离和突触小泡聚集减少。我们的数据证明了 Piccolo 相关蛋白在无脊椎动物中的保守性,并确定了 Fife 在调节 AZ 结构和功能中的关键作用。这些发现表明 CAZ 比以前认为的更保守,并为通过更简单的模型系统的遗传研究来更全面地了解 CAZ 蛋白如何调节突触前结构和功能打开了大门。