Suppr超能文献

数据挖掘与临床数据存储库:来自66.7万患者数据集的洞察

Data mining and clinical data repositories: Insights from a 667,000 patient data set.

作者信息

Mullins Irene M, Siadaty Mir S, Lyman Jason, Scully Ken, Garrett Carleton T, Miller W Greg, Muller Rudy, Robson Barry, Apte Chid, Weiss Sholom, Rigoutsos Isidore, Platt Daniel, Cohen Simona, Knaus William A

机构信息

Department of Public Health Sciences, University of Virginia Health System, Charlottesville, VA, USA.

出版信息

Comput Biol Med. 2006 Dec;36(12):1351-77. doi: 10.1016/j.compbiomed.2005.08.003. Epub 2005 Dec 22.

Abstract

Clinical repositories containing large amounts of biological, clinical, and administrative data are increasingly becoming available as health care systems integrate patient information for research and utilization objectives. To investigate the potential value of searching these databases for novel insights, we applied a new data mining approach, HealthMiner, to a large cohort of 667,000 inpatient and outpatient digital records from an academic medical system. HealthMiner approaches knowledge discovery using three unsupervised methods: CliniMiner, Predictive Analysis, and Pattern Discovery. The initial results from this study suggest that these approaches have the potential to expand research capabilities through identification of potentially novel clinical disease associations.

摘要

随着医疗保健系统整合患者信息以实现研究和利用目标,包含大量生物、临床和管理数据的临床存储库越来越容易获取。为了研究在这些数据库中搜索新颖见解的潜在价值,我们将一种新的数据挖掘方法HealthMiner应用于来自一个学术医疗系统的66.7万份住院和门诊数字记录的大型队列。HealthMiner使用三种无监督方法进行知识发现:临床挖掘(CliniMiner)、预测分析和模式发现。这项研究的初步结果表明,这些方法有可能通过识别潜在的新型临床疾病关联来扩展研究能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验