Fischer Tiffany B, Holmes J Bradley, Miller Ian R, Parsons Jerod R, Tung Leon, Hu James C, Tsai Jerry
Department of Biochemistry and Biophysics, Texas A&M University, Texas Agriculture Experiment Station, 2128 TAMU, Room 111 College Station, TX 77843, USA.
J Struct Biol. 2006 Feb;153(2):103-12. doi: 10.1016/j.jsb.2005.11.005. Epub 2005 Dec 7.
An essential step in understanding the molecular basis of protein-protein interactions is the accurate identification of inter-protein contacts. We evaluate a number of common methods used in analyzing protein-protein interfaces: a Voronoi polyhedra-based approach, changes in solvent accessible surface area (DeltaSASA) and various radial cutoffs (closest atom, Cbeta, and centroid). First, we compared the Voronoi polyhedra-based analysis to the DeltaSASA and show that using Voronoi polyhedra finds knob-in-hole contacts. To assess the accuracy between the Voronoi polyhedra-based approach and the various radial cutoff methods, two sets of data were used: a small set of 75 experimental mutants and a larger one of 592 structures of protein-protein interfaces. In an assessment using the small set, the Voronoi polyhedra-based methods, a solvent accessible surface area method, and the closest atom radial method identified 100% of the direct contacts defined by mutagenesis data, but only the Voronoi polyhedra-based method found no false positives. The other radial methods were not able to find all of the direct contacts even using a cutoff of 9A. With the larger set of structures, we compared the overall number contacts using the Voronoi polyhedra-based method as a standard. All the radial methods using a 6-A cutoff identified more interactions, but these putative contacts included many false positives as well as missed many false negatives. While radial cutoffs are quicker to calculate as well as to implement, this result highlights why radial cutoff methods do not have the proper resolution to detail the non-homogeneous packing within protein interfaces, and suggests an inappropriate bias in pair-wise contact potentials. Of the radial cutoff methods, using the closest atom approach exhibits the best approximation to the more intensive Voronoi calculation. Our version of the Voronoi polyhedra-based method QContacts is available at .
理解蛋白质-蛋白质相互作用分子基础的一个关键步骤是准确识别蛋白质间的接触点。我们评估了一些用于分析蛋白质-蛋白质界面的常用方法:基于Voronoi多面体的方法、溶剂可及表面积变化(DeltaSASA)以及各种径向截止值(最近原子、Cβ和质心)。首先,我们将基于Voronoi多面体的分析与DeltaSASA进行了比较,结果表明使用Voronoi多面体可以找到“旋钮-孔洞”接触。为了评估基于Voronoi多面体的方法与各种径向截止方法之间的准确性,我们使用了两组数据:一组是75个实验突变体的小数据集,另一组是592个蛋白质-蛋白质界面结构的更大数据集。在使用小数据集进行的评估中,基于Voronoi多面体的方法、溶剂可及表面积方法和最近原子径向方法识别出了诱变数据定义的所有直接接触点,但只有基于Voronoi多面体的方法没有发现假阳性。即使使用9Å的截止值,其他径向方法也无法找到所有的直接接触点。对于更大的结构数据集,我们以基于Voronoi多面体的方法作为标准比较了总的接触点数。所有使用6Å截止值的径向方法识别出了更多的相互作用,但这些假定的接触点包括许多假阳性,也遗漏了许多假阴性。虽然径向截止值计算和实施起来更快,但这一结果凸显了为什么径向截止方法没有合适的分辨率来详细描述蛋白质界面内的非均匀堆积,并暗示了成对接触势中存在不适当的偏差。在径向截止方法中,使用最近原子方法对更密集的Voronoi计算表现出了最佳近似。我们基于Voronoi多面体的方法QContacts的版本可在[具体网址]获取。