Suppr超能文献

评估蛋白质结合位点定义的功能影响。

Assessing the functional impact of protein binding site definition.

机构信息

Departments of Systems and Computational Biology, and Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.

出版信息

Protein Sci. 2024 Jun;33(6):e5026. doi: 10.1002/pro.5026.

Abstract

Many biomedical applications, such as classification of binding specificities or bioengineering, depend on the accurate definition of protein binding interfaces. Depending on the choice of method used, substantially different sets of residues can be classified as belonging to the interface of a protein. A typical approach used to verify these definitions is to mutate residues and measure the impact of these changes on binding. Besides the lack of exhaustive data, this approach also suffers from the fundamental problem that a mutation introduces an unknown amount of alteration into an interface, which potentially alters the binding characteristics of the interface. In this study we explore the impact of alternative binding site definitions on the ability of a protein to recognize its cognate ligand using a pharmacophore approach, which does not affect the interface. The study also shows that methods for protein binding interface predictions should perform above approximately F-score = 0.7 accuracy level to capture the biological function of a protein.

摘要

许多生物医学应用,如结合特异性的分类或生物工程,都依赖于蛋白质结合界面的准确定义。根据所使用方法的不同,可以将大量不同的残基分类为属于蛋白质界面的一部分。验证这些定义的一种典型方法是突变残基并测量这些变化对结合的影响。除了缺乏详尽的数据之外,这种方法还存在一个根本问题,即突变会在界面中引入未知量的改变,这可能会改变界面的结合特性。在这项研究中,我们使用药效基团方法探索了替代结合位点定义对蛋白质识别其同源配体能力的影响,该方法不会影响界面。研究还表明,蛋白质结合界面预测方法的性能应该高于大约 F 分数=0.7 的准确度水平,以捕捉蛋白质的生物学功能。

相似文献

1
Assessing the functional impact of protein binding site definition.
Protein Sci. 2024 Jun;33(6):e5026. doi: 10.1002/pro.5026.
2
Assessing the functional impact of protein binding site definition.
bioRxiv. 2023 Jan 27:2023.01.26.525812. doi: 10.1101/2023.01.26.525812.
4
Burial Level Change Defines a High Energetic Relevance for Protein Binding Interfaces.
IEEE/ACM Trans Comput Biol Bioinform. 2015 Mar-Apr;12(2):410-21. doi: 10.1109/TCBB.2014.2361355.
5
Evolution of specific protein-protein interaction sites following gene duplication.
J Mol Biol. 2012 Oct 19;423(2):257-72. doi: 10.1016/j.jmb.2012.06.039. Epub 2012 Jul 9.
6
Biological and functional relevance of CASP predictions.
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):374-386. doi: 10.1002/prot.25396. Epub 2017 Oct 17.
7
ProtLID, a Residue-Based Pharmacophore Approach to Identify Cognate Protein Ligands in the Immunoglobulin Superfamily.
Structure. 2016 Dec 6;24(12):2217-2226. doi: 10.1016/j.str.2016.10.012. Epub 2016 Nov 23.
8
PLIC: protein-ligand interaction clusters.
Database (Oxford). 2014 Apr 23;2014(0):bau029. doi: 10.1093/database/bau029. Print 2014.
9
Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
PLoS Comput Biol. 2009 Jan;5(1):e1000267. doi: 10.1371/journal.pcbi.1000267. Epub 2009 Jan 23.
10
Identification of ligand binding sites of proteins using the Gaussian Network Model.
PLoS One. 2011 Jan 25;6(1):e16474. doi: 10.1371/journal.pone.0016474.

引用本文的文献

1
Optimal selection of suitable templates in protein interface prediction.
Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad510.

本文引用的文献

1
Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment.
Proteins. 2023 Dec;91(12):1658-1683. doi: 10.1002/prot.26609. Epub 2023 Oct 31.
2
Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes.
Annu Rev Biophys. 2023 May 9;52:183-206. doi: 10.1146/annurev-biophys-102622-084607. Epub 2023 Jan 10.
3
Simple mechanisms for the evolution of protein complexity.
Protein Sci. 2022 Nov;31(11):e4449. doi: 10.1002/pro.4449.
4
Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation.
Nat Immunol. 2022 Sep;23(9):1365-1378. doi: 10.1038/s41590-022-01289-w. Epub 2022 Aug 23.
5
Integrated structure-based protein interface prediction.
BMC Bioinformatics. 2022 Jul 25;23(1):301. doi: 10.1186/s12859-022-04852-2.
6
Improved prediction of protein-protein interactions using AlphaFold2.
Nat Commun. 2022 Mar 10;13(1):1265. doi: 10.1038/s41467-022-28865-w.
7
From complete cross-docking to partners identification and binding sites predictions.
PLoS Comput Biol. 2022 Jan 28;18(1):e1009825. doi: 10.1371/journal.pcbi.1009825. eCollection 2022 Jan.
8
Applying and improving AlphaFold at CASP14.
Proteins. 2021 Dec;89(12):1711-1721. doi: 10.1002/prot.26257.
9
AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function.
J Chem Inf Model. 2021 Oct 25;61(10):4827-4831. doi: 10.1021/acs.jcim.1c01114. Epub 2021 Sep 29.
10
INTERCAAT: identifying interface residues between macromolecules.
Bioinformatics. 2022 Jan 3;38(2):554-555. doi: 10.1093/bioinformatics/btab596.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验