Suppr超能文献

稳态酵母培养物对碳源瞬态扰动的转录反应。

Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source.

作者信息

Ronen Michal, Botstein David

机构信息

Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):389-94. doi: 10.1073/pnas.0509978103. Epub 2005 Dec 28.

Abstract

To understand the dynamics of transcriptional response to changing environments, well defined, easily controlled, and short-term perturbation experiments were undertaken. We subjected steady-state cultures of Saccharomyces cerevisiae in chemostats growing on limiting galactose to two different size pulses of glucose, well known to be a preferred carbon source. Although these pulses were not large enough to change growth rates or cell size, approximately 25% of the genes changed their expression at least 2-fold. Using DNA microarrays to estimate mRNA abundance, we found a number of distinguishable patterns of transcriptional response among the many genes whose expression changed. Many of these genes were already known to be regulated by particular transcription factors; we estimated five potentially relevant transcription factor activities from the observed changes in gene expression (i.e., Mig1p, Gal4p, Cat8p, Rgt1p, Adr1p, and Rcs1p). With these estimates, for two regulatory circuits involving interaction among multiple regulators we could generate dynamical models that quantitatively account for the observed transcriptional responses to the transient perturbations.

摘要

为了理解转录对变化环境的响应动态,我们进行了定义明确、易于控制且短期的扰动实验。我们将在恒化器中以限制性半乳糖为碳源生长的酿酒酵母稳态培养物,给予两个不同大小的葡萄糖脉冲,葡萄糖是众所周知的优质碳源。尽管这些脉冲不足以改变生长速率或细胞大小,但约25%的基因表达至少变化了2倍。使用DNA微阵列来估计mRNA丰度,我们在许多表达发生变化的基因中发现了一些可区分的转录响应模式。其中许多基因已知受特定转录因子调控;我们根据观察到的基因表达变化估计了五种潜在相关的转录因子活性(即Mig1p、Gal4p、Cat8p、Rgt1p、Adr1p和Rcs1p)。基于这些估计,对于涉及多个调节因子相互作用的两个调控回路,我们可以生成动力学模型,定量解释观察到的对瞬时扰动的转录响应。

相似文献

1
Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):389-94. doi: 10.1073/pnas.0509978103. Epub 2005 Dec 28.
4
How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
Genetics. 2005 Feb;169(2):583-94. doi: 10.1534/genetics.104.034512. Epub 2004 Oct 16.
9
Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter.
Nucleic Acids Res. 2006 Mar 9;34(5):1427-38. doi: 10.1093/nar/gkl028. Print 2006.
10
SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
Genes Dev. 2001 Aug 1;15(15):1935-45. doi: 10.1101/gad.911401.

引用本文的文献

1
Mitochondrial dysfunction rapidly modulates the abundance and thermal stability of cellular proteins.
Life Sci Alliance. 2023 Mar 20;6(6). doi: 10.26508/lsa.202201805. Print 2023 Jun.
2
Is heterogeneity in large-scale bioreactors a real problem in recombinant protein synthesis by Pichia pastoris?
Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2223-2233. doi: 10.1007/s00253-023-12434-2. Epub 2023 Feb 27.
3
The metabolite-controlled ubiquitin conjugase Ubc8 promotes mitochondrial protein import.
Life Sci Alliance. 2022 Oct 17;6(1). doi: 10.26508/lsa.202201526. Print 2023 Jan.
4
Fluctuating Environments Maintain Genetic Diversity through Neutral Fitness Effects and Balancing Selection.
Mol Biol Evol. 2021 Sep 27;38(10):4362-4375. doi: 10.1093/molbev/msab173.
5
Inferring TF activities and activity regulators from gene expression data with constraints from TF perturbation data.
Bioinformatics. 2021 Jun 9;37(9):1234-1245. doi: 10.1093/bioinformatics/btaa947.
6
Molecular signatures of aneuploidy-driven adaptive evolution.
Nat Commun. 2020 Jan 30;11(1):588. doi: 10.1038/s41467-019-13669-2.
7
Quantitative Flow Cytometry to Understand Population Heterogeneity in Response to Changes in Substrate Availability in and Chemostats.
Front Bioeng Biotechnol. 2019 Aug 5;7:187. doi: 10.3389/fbioe.2019.00187. eCollection 2019.
8
A fast and tuneable auxin-inducible degron for depletion of target proteins in budding yeast.
Yeast. 2019 Jan;36(1):75-81. doi: 10.1002/yea.3362. Epub 2018 Nov 12.
10
OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism.
PLoS One. 2016 Apr 21;11(4):e0154188. doi: 10.1371/journal.pone.0154188. eCollection 2016.

本文引用的文献

1
Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria.
PLoS Biol. 2005 Jul;3(7):e238. doi: 10.1371/journal.pbio.0030238. Epub 2005 Jun 21.
2
Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 2005 Jun 24;332(1):254-62. doi: 10.1016/j.bbrc.2005.04.119.
4
Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures.
Mol Biol Cell. 2005 May;16(5):2503-17. doi: 10.1091/mbc.e04-11-0968. Epub 2005 Mar 9.
6
Glucose sensing through the Hxk2-dependent signalling pathway.
Biochem Soc Trans. 2005 Feb;33(Pt 1):265-8. doi: 10.1042/BST0330265.
7
Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae.
Eur J Biochem. 2004 Dec;271(23-24):4855-64. doi: 10.1111/j.1432-1033.2004.04451.x.
8
How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
Genetics. 2005 Feb;169(2):583-94. doi: 10.1534/genetics.104.034512. Epub 2004 Oct 16.
10
Nutritional homeostasis in batch and steady-state culture of yeast.
Mol Biol Cell. 2004 Sep;15(9):4089-104. doi: 10.1091/mbc.e04-04-0306. Epub 2004 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验