Suppr超能文献

Rgt1是一种葡萄糖感应转录因子,它是酿酒酵母中HXK2基因转录抑制所必需的。

Rgt1, a glucose sensing transcription factor, is required for transcriptional repression of the HXK2 gene in Saccharomyces cerevisiae.

作者信息

Palomino Aaron, Herrero Pilar, Moreno Fernando

机构信息

Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Campus del Cristo, Edificio Santiago Gascón, 33006 Oviedo, Spain.

出版信息

Biochem J. 2005 Jun 1;388(Pt 2):697-703. doi: 10.1042/BJ20050160.

Abstract

Expression of HXK2, a gene encoding a Saccharomyces cerevisiae bifunctional protein with catalytic and regulatory functions, is controlled by glucose availability, being activated in the presence of glucose and inhibited when the levels of the sugar are low. In the present study, we identified Rgt1 as a transcription factor that, together with the Med8 protein, is essential for repression of the HXK2 gene in the absence of glucose. Rgt1 represses HXK2 expression by binding specifically to the motif (CGGAAAA) located at -395 bp relative to the ATG translation start codon in the HXK2 promoter. Disruption of the RGT1 gene causes an 18-fold increase in the level of HXK2 transcript in the absence of glucose. Rgt1 binds to the RGT1 element of HXK2 promoter in a glucose-dependent manner, and the repression of target gene depends on binding of Rgt1 to DNA. The physiological significance of the connection between two glucose-signalling pathways, the Snf3/Rgt2 that causes glucose induction and the Mig1/Hxk2 that causes glucose repression, was also analysed.

摘要

HXK2是一种编码具有催化和调节功能的酿酒酵母双功能蛋白的基因,其表达受葡萄糖可用性的控制,在葡萄糖存在时被激活,而当糖水平较低时被抑制。在本研究中,我们鉴定出Rgt1作为一种转录因子,它与Med8蛋白一起,在缺乏葡萄糖时对HXK2基因的抑制至关重要。Rgt1通过特异性结合HXK2启动子中相对于ATG翻译起始密码子位于-395 bp处的基序(CGGAAAA)来抑制HXK2的表达。在缺乏葡萄糖的情况下,RGT1基因的破坏导致HXK2转录水平增加18倍。Rgt1以葡萄糖依赖的方式与HXK2启动子的RGT1元件结合,并且靶基因的抑制取决于Rgt1与DNA的结合。我们还分析了两条葡萄糖信号通路之间联系的生理意义,即引起葡萄糖诱导的Snf3/Rgt2和引起葡萄糖抑制的Mig1/Hxk2。

相似文献

2
Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter.
Nucleic Acids Res. 2006 Mar 9;34(5):1427-38. doi: 10.1093/nar/gkl028. Print 2006.
3
How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
Genetics. 2005 Feb;169(2):583-94. doi: 10.1534/genetics.104.034512. Epub 2004 Oct 16.
4
DNA-binding properties of the yeast Rgt1 repressor.
Biochimie. 2009 Feb;91(2):300-3. doi: 10.1016/j.biochi.2008.09.002. Epub 2008 Oct 7.
5
The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae.
Biochim Biophys Acta. 2015 Jul;1850(7):1362-7. doi: 10.1016/j.bbagen.2015.03.006. Epub 2015 Mar 22.
6
The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
J Biol Chem. 2004 Apr 2;279(14):14440-6. doi: 10.1074/jbc.M313431200. Epub 2004 Jan 8.
7
Glucose sensing through the Hxk2-dependent signalling pathway.
Biochem Soc Trans. 2005 Feb;33(Pt 1):265-8. doi: 10.1042/BST0330265.
10

引用本文的文献

2
A fast method to distinguish between fermentative and respiratory metabolisms in single yeast cells.
iScience. 2023 Dec 21;27(1):108767. doi: 10.1016/j.isci.2023.108767. eCollection 2024 Jan 19.
3
Coupling High-Throughput and Targeted Screening for Identification of Nonobvious Metabolic Engineering Targets.
ACS Synth Biol. 2024 Jan 19;13(1):168-182. doi: 10.1021/acssynbio.3c00396. Epub 2023 Dec 23.
4
PKA regulatory subunit Bcy1 couples growth, lipid metabolism, and fermentation during anaerobic xylose growth in Saccharomyces cerevisiae.
PLoS Genet. 2023 Jul 6;19(7):e1010593. doi: 10.1371/journal.pgen.1010593. eCollection 2023 Jul.
5
Moonlighting Proteins: The Case of the Hexokinases.
Front Mol Biosci. 2021 Jun 9;8:701975. doi: 10.3389/fmolb.2021.701975. eCollection 2021.
6
Robustness of Nutrient Signaling Is Maintained by Interconnectivity Between Signal Transduction Pathways.
Front Physiol. 2019 Jan 21;9:1964. doi: 10.3389/fphys.2018.01964. eCollection 2018.
9
Assessing glucose uptake through the yeast hexose transporter 1 (Hxt1).
PLoS One. 2015 Mar 27;10(3):e0121985. doi: 10.1371/journal.pone.0121985. eCollection 2015.
10
Regulations of sugar transporters: insights from yeast.
Curr Genet. 2013 May;59(1-2):1-31. doi: 10.1007/s00294-013-0388-8. Epub 2013 Mar 1.

本文引用的文献

1
The eukaryotic plasma membrane as a nutrient-sensing device.
Trends Biochem Sci. 2004 Oct;29(10):556-64. doi: 10.1016/j.tibs.2004.08.010.
3
Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae.
Eukaryot Cell. 2004 Feb;3(1):221-31. doi: 10.1128/EC.3.1.221-231.2004.
4
The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
J Biol Chem. 2004 Apr 2;279(14):14440-6. doi: 10.1074/jbc.M313431200. Epub 2004 Jan 8.
5
Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1.
Curr Genet. 2003 Oct;44(1):19-25. doi: 10.1007/s00294-003-0423-2. Epub 2003 Jul 9.
6
Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1.
Mol Cell Biol. 2003 Aug;23(15):5208-16. doi: 10.1128/MCB.23.15.5208-5216.2003.
7
Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling.
Science. 2003 Apr 11;300(5617):332-6. doi: 10.1126/science.1080585.
8
Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator.
J Biol Chem. 2003 Mar 21;278(12):10322-7. doi: 10.1074/jbc.M212802200. Epub 2003 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验