Suppr超能文献

独特型网络的动力学与拓扑结构。

Dynamics and topology of idiotypic networks.

作者信息

Neumann A U, Weisbuch G

机构信息

Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.

出版信息

Bull Math Biol. 1992 Sep;54(5):699-726. doi: 10.1007/BF02459926.

Abstract

Jerne's idiotypic network was previously modelled using simple proliferation dynamics and a homogeneous tree as a connection structure. The present paper studies analytically and numerically the genericity of the previous results when the network connection structure is randomized, e.g., with loops and varying connection intensities. The main feature of the dynamics is the existence of different localized attractors that can be interpreted in terms of vaccination and tolerance. This feature is preserved when loops are added to the network, with a few exceptions concerning some regular lattices. Localized attractors might be destroyed by the introduction of a continuous distribution of connection intensities. We conclude by discussing possible modifications of he elementary model that preserve localization of the attractors and functionality of the network.

摘要

耶尔恩的独特型网络先前是使用简单的增殖动力学和均匀树作为连接结构进行建模的。本文通过分析和数值方法研究了网络连接结构随机化时(例如带有环和变化的连接强度)先前结果的普遍性。动力学的主要特征是存在不同的局部吸引子,这些吸引子可以从疫苗接种和耐受性的角度进行解释。当向网络添加环时,这一特征得以保留,但一些规则晶格存在少数例外情况。连接强度的连续分布的引入可能会破坏局部吸引子。我们通过讨论基本模型的可能修改来结束本文,这些修改保留了吸引子的局部化和网络的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验