Zimmermann Martín G, Eguíluz Víctor M
Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), E-07071 Palma de Mallorca, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056118. doi: 10.1103/PhysRevE.72.056118. Epub 2005 Nov 16.
Cooperative behavior among a group of agents is studied assuming adaptive interactions. Each agent plays a Prisoner's Dilemma game with its local neighbors, collects an aggregate payoff, and imitates the strategy of its best neighbor. Agents may punish or reward their neighbors by removing or sustaining the interactions, according to their satisfaction level and strategy played. An agent may dismiss an interaction, and the corresponding neighbor is replaced by another randomly chosen agent, introducing diversity and evolution to the network structure. We perform an extensive numerical and analytical study, extending results in M. G. Zimmermann, V. M. Eguíluz, and M. San Miguel, Phys. Rev. E 69, 065102(R) (2004). We show that the system typically reaches either a full-defective state or a highly cooperative steady state. The latter equilibrium solution is composed mostly by cooperative agents, with a minor population of defectors that exploit the cooperators. It is shown how the network adaptation dynamics favors the emergence of cooperators with the highest payoff. These "leaders" are shown to sustain the global cooperative steady state. Also we find that the average payoff of defectors is larger than the average payoff of cooperators. Whenever "leaders" are perturbed (e.g., by addition of noise), an unstable situation arises and global cascades with oscillations between the nearly full defection network and the fully cooperative outcome are observed.
在假设存在适应性相互作用的情况下,研究了一组智能体之间的合作行为。每个智能体与其局部邻居进行囚徒困境博弈,收集总收益,并模仿其最佳邻居的策略。智能体可以根据自身的满意度水平和所采用的策略,通过消除或维持相互作用来惩罚或奖励其邻居。一个智能体可以终止一次相互作用,相应的邻居会被另一个随机选择的智能体取代,从而为网络结构引入多样性和演化。我们进行了广泛的数值和分析研究,扩展了M. G. 齐默尔曼、V. M. 埃吉卢兹和M. 圣米格尔在《物理评论E》69, 065102(R) (2004)中的结果。我们表明,该系统通常会达到完全缺陷状态或高度合作的稳态。后一种平衡解主要由合作智能体组成,有少量利用合作者的背叛者群体。展示了网络适应动态如何有利于具有最高收益的合作者的出现。这些“领导者”被证明维持着全局合作稳态。我们还发现,背叛者的平均收益大于合作者的平均收益。每当“领导者”受到干扰(例如,通过添加噪声)时,就会出现不稳定情况,并观察到在几乎完全背叛的网络和完全合作结果之间振荡的全局级联。