Kleinfelter Natalie, Moroni Monica, Cushman John H
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056306. doi: 10.1103/PhysRevE.72.056306. Epub 2005 Nov 2.
A finite-size (or scale) Lyapunov exponent (FSLE), lambdaa(x), is presented in a statistical mechanical framework and employed to characterize mixing in a variety of laboratory and computational fluid mechanics experiments. The FSLE is the exponential rate at which two particles separate from a distance x to ax. Laboratory particle tracking experiments are used to study penetrative convection and flow in porous media while computational experiments are used to study Lévy processes and deterministic diffusion. The apparent scaling relation lambaa(x) approximately Cax(-beta(a)) of the FSLE holds over intermediate initial separations where the laboratory experiment data is most accurate and asymptotically for the computational experiments. The dependence of the exponent beta on a decreases with increasing a. In the matched index porous system, Ca is also a function of mean fluid velocity. The exponent beta is alpha when the Lévy process is alpha-stable and in this case beta is independent of a.
有限尺寸(或尺度)李雅普诺夫指数(FSLE),λa(x),在统计力学框架中被提出,并用于表征各种实验室和计算流体力学实验中的混合情况。FSLE是两个粒子从距离x分离到ax的指数速率。实验室粒子跟踪实验用于研究渗透对流和多孔介质中的流动,而计算实验用于研究列维过程和确定性扩散。FSLE的表观标度关系λa(x)≈Ca x^(-β(a))在实验室实验数据最准确的中间初始间距范围内成立,并且在计算实验中渐近成立。指数β对a的依赖性随着a的增加而减小。在匹配指数多孔系统中,Ca也是平均流体速度的函数。当列维过程是α稳定时,指数β为α,在这种情况下β与a无关。