Suppr超能文献

由布朗运动的非平稳扩展所模拟的反常扩散。

Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.

作者信息

Cushman John H, O'Malley Daniel, Park Moongyu

机构信息

Department of Earth and Atmospheric Sciences and Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):032101. doi: 10.1103/PhysRevE.79.032101. Epub 2009 Mar 27.

Abstract

If the mean-square displacement of a stochastic process is proportional to t;{beta} , beta not equal1 , then it is said to be anomalous. We construct a family of Markovian stochastic processes with independent nonstationary increments and arbitrary but a priori specified mean-square displacement. We label the family as an extended Brownian motion and show that they satisfy a Langevin equation with time-dependent diffusion coefficient. If the time derivative of the variance of the process is homogeneous, then by computing the fractal dimension it can be shown that the complexity of the family is the same as that of the Brownian motion. For two particles initially separated by a distance x , the finite-size Lyapunov exponent (FSLE) measures the average rate of exponential separation to a distance ax . An analytical expression is developed for the FSLEs of the extended Brownian processes and numerical examples presented. The explicit construction of these processes illustrates that contrary to what has been stated in the literature, a power-law mean-square displacement is not necessarily related to a breakdown in the classical central limit theorem (CLT) caused by, for example, correlation (fractional Brownian motion or correlated continuous-time random-walk schemes) or infinite variance (Levy motion). The classical CLT, coupled with nonstationary increments, can and often does give rise to power-law moments such as the mean-square displacement.

摘要

如果一个随机过程的均方位移与(t^{\beta})成正比,其中(\beta\neq1),那么就称其为反常的。我们构造了一族具有独立非平稳增量且均方位移任意但事先给定的马尔可夫随机过程。我们将这一族过程标记为扩展布朗运动,并表明它们满足一个具有时间依赖扩散系数的朗之万方程。如果该过程方差的时间导数是齐次的,那么通过计算分形维数可以表明这一族过程的复杂性与布朗运动的复杂性相同。对于最初相距距离(x)的两个粒子,有限尺寸李雅普诺夫指数(FSLE)衡量了指数分离到距离(ax)的平均速率。我们推导出了扩展布朗过程FSLE的解析表达式并给出了数值示例。这些过程的显式构造表明,与文献中所述相反,幂律均方位移不一定与例如相关性(分数布朗运动或相关连续时间随机游走方案)或无穷方差(列维运动)导致的经典中心极限定理(CLT)失效有关。经典的CLT,再加上非平稳增量,可以而且常常会产生幂律矩,比如均方位移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验