Parashar R, Cushman J H
Department of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 2):017201. doi: 10.1103/PhysRevE.76.017201. Epub 2007 Jul 11.
The finite-size Lyapunov exponent (FSLE) is the exponential rate at which two particles separate from a distance of r to a x r (a>1) and provides a measure of dispersive mixing in chaotic systems. It is shown analytically that for particle trajectories governed by symmetric alpha -stable Levy motion, the FSLE is proportional to the diffusion coefficient and inversely proportional to r(alpha). This power law provides an easy method to determine the parameters for Levy processes and hence has applications to superdiffusion in the atmospheric, oceanic, and terrestrial sciences.
有限尺寸李雅普诺夫指数(FSLE)是两个粒子从距离r分离到距离ar(a>1)的指数速率,并提供了混沌系统中扩散混合的一种度量。分析表明,对于由对称α稳定列维运动控制的粒子轨迹,FSLE与扩散系数成正比,与r(α)成反比。这种幂律为确定列维过程的参数提供了一种简便方法,因此在大气、海洋和地球科学中的超扩散研究中有应用。