Olsen Shaun K, Li James Y H, Bromleigh Carrie, Eliseenkova Anna V, Ibrahimi Omar A, Lao Zhimin, Zhang Fuming, Linhardt Robert J, Joyner Alexandra L, Mohammadi Moosa
Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
Genes Dev. 2006 Jan 15;20(2):185-98. doi: 10.1101/gad.1365406. Epub 2005 Dec 29.
Two of the four human FGF8 splice isoforms, FGF8a and FGF8b, are expressed in the mid-hindbrain region during development. Although the only difference between these isoforms is the presence of an additional 11 amino acids at the N terminus of FGF8b, these isoforms possess remarkably different abilities to pattern the midbrain and anterior hindbrain. To reveal the structural basis by which alternative splicing modulates the organizing activity of FGF8, we solved the crystal structure of FGF8b in complex with the "c" splice isoform of FGF receptor 2 (FGFR2c). Using surface plasmon resonance (SPR), we also characterized the receptor-binding specificity of FGF8a and FGF8b, the "b" isoform of FGF17 (FGF17b), and FGF18. The FGF8b-FGFR2c structure shows that alternative splicing permits a single additional contact between phenylalanine 32 (F32) of FGF8b and a hydrophobic groove within Ig domain 3 of the receptor that is also present in FGFR1c, FGFR3c, and FGFR4. Consistent with the structure, mutation of F32 to alanine reduces the affinity of FGF8b toward all these receptors to levels characteristic of FGF8a. More importantly, analysis of the mid-hindbrain patterning ability of the FGF8b(F32A) mutant in chick embryos and murine midbrain explants shows that this mutation functionally converts FGF8b to FGF8a. Moreover, our data suggest that the intermediate receptor-binding affinities of FGF17b and FGF18, relative to FGF8a and FGF8b, also account for the distinct patterning abilities of these two ligands. We also show that the mode of FGF8 receptor-binding specificity is distinct from that of other FGFs and provide the first biochemical evidence for a physiological FGF8b-FGFR1c interaction during mid-hindbrain development. Consistent with the indispensable role of FGF8 in embryonic development, we show that the FGF8 mode of receptor binding appeared as early as in nematodes and has been preserved throughout evolution.
人类FGF8的四种剪接异构体中的两种,即FGF8a和FGF8b,在发育过程中于中后脑区域表达。尽管这些异构体之间唯一的差异是FGF8b的N端存在额外的11个氨基酸,但这些异构体在中脑和前脑后部形成模式的能力却显著不同。为了揭示可变剪接调节FGF8组织活性的结构基础,我们解析了FGF8b与FGF受体2(FGFR2c)的“c”剪接异构体复合物的晶体结构。利用表面等离子体共振(SPR),我们还表征了FGF8a和FGF8b、FGF17的“b”异构体(FGF17b)以及FGF18的受体结合特异性。FGF8b - FGFR2c结构表明,可变剪接允许FGF8b的苯丙氨酸32(F32)与受体Ig结构域3内的一个疏水凹槽之间形成一个额外的接触,该凹槽在FGFR1c、FGFR3c和FGFR4中也存在。与该结构一致,将F32突变为丙氨酸会使FGF8b对所有这些受体的亲和力降低至FGF8a的特征水平。更重要的是,对鸡胚和小鼠中脑外植体中FGF8b(F32A)突变体的中后脑模式形成能力的分析表明,这种突变在功能上将FGF8b转变为FGF8a。此外,我们的数据表明,相对于FGF8a和FGF8b,FGF17b和FGF18的中等受体结合亲和力也解释了这两种配体不同的模式形成能力。我们还表明,FGF8受体结合特异性模式与其他FGFs不同,并为中后脑发育过程中生理性FGF8b - FGFR1c相互作用提供了首个生化证据。与FGF8在胚胎发育中不可或缺的作用一致,我们表明FGF8受体结合模式早在线虫中就已出现,并在整个进化过程中得以保留。
Cell Growth Differ. 1996-10
Dev Growth Differ. 2012-3-8
Nat Rev Drug Discov. 2025-5
Sci Rep. 2024-8-27
Cytokine Growth Factor Rev. 2024-8
Front Cell Dev Biol. 2024-1-8
MedComm (2020). 2023-9-23
Nature. 2023-6
Biomol NMR Assign. 2023-6
J Clin Res Pediatr Endocrinol. 2023-5-29
Methods Enzymol. 1997
Cytokine Growth Factor Rev. 2005-4
Dev Growth Differ. 2004-12
Proc Natl Acad Sci U S A. 2004-1-27