Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
Dev Biol. 2010 Feb 15;338(2):183-92. doi: 10.1016/j.ydbio.2009.11.034. Epub 2009 Dec 5.
The single Fgf8 gene in mice produces eight protein isoforms (Fgf8a-h) with different N-termini by alternative splicing. Gain-of-function studies have demonstrated that Fgf8a and Fgf8b have distinct activities in the developing midbrain and hindbrain (MHB) due to their different binding affinities with FGF receptors. Here we have performed loss-of-function analyses to determine the in vivo requirement for these two Fgf8 spliceforms during MHB development. We showed that deletion of Fgf8b-containing spliceforms (b, d, f and h) leads to loss of multiple key regulatory genes, including Fgf8 itself, in the MHB region. Therefore, specific inactivation of Fgf8b-containing spliceforms, similar to the loss of Fgf8, in MHB progenitors results in deletion of the midbrain, isthmus, and cerebellum. We also created a splice-site mutation abolishing Fgf8a-containing spliceforms (a, c, e, and g). Mice lacking Fgf8a-containing spliceforms exhibit growth retardation and postnatal lethality, and the phenotype is variable in different genetic backgrounds, suggesting that the Fgf8a-containing spliceforms may play a role in modulating the activity of Fgf8. Surprisingly, no discernable defect was detected in the midbrain and cerebellum of Fgf8a-deficient mice. To determine if Fgf17, which is expressed in the MHB region and possesses similar activities to Fgf8a based on gain-of-function studies, may compensate for the loss of Fgf8a, we generated Fgf17 and Fgf8a double mutant mice. Mice lacking both Fgf8a-containing spliceforms and Fgf17 display the same defect in the posterior midbrain and anterior cerebellum as Fgf17 mutant mice. Therefore, Fgf8b-containing spliceforms, but not Fgf8a, are essential for the function of Fgf8 during the development of the midbrain and cerebellum.
小鼠中的单个 Fgf8 基因通过选择性剪接产生具有不同 N 末端的八种蛋白异构体(Fgf8a-h)。功能获得研究表明,由于 Fgf8a 和 Fgf8b 与 FGF 受体的结合亲和力不同,它们在发育中的中脑和后脑(MHB)中具有不同的活性。在这里,我们进行了功能丧失分析,以确定这两种 Fgf8 剪接体在 MHB 发育过程中的体内需求。我们表明,删除包含 Fgf8b 的剪接体(b、d、f 和 h)会导致 MHB 区域中多个关键调节基因的缺失,包括 Fgf8 本身。因此,MHB 祖细胞中特定的 Fgf8b 包含剪接体失活,类似于 Fgf8 的缺失,会导致中脑、峡部和小脑的缺失。我们还创建了一个剪接位点突变,消除了包含 Fgf8a 的剪接体(a、c、e 和 g)。缺乏包含 Fgf8a 的剪接体的小鼠表现出生长迟缓和出生后致死,并且表型在不同的遗传背景下存在差异,这表明包含 Fgf8a 的剪接体可能在调节 Fgf8 的活性中发挥作用。令人惊讶的是,在 Fgf8 缺陷小鼠的中脑中没有检测到明显的缺陷。为了确定在 MHB 区域表达并基于功能获得研究具有类似 Fgf8a 活性的 Fgf17 是否可以弥补 Fgf8a 的缺失,我们生成了 Fgf17 和 Fgf8a 双突变小鼠。缺乏包含 Fgf8a 的剪接体和 Fgf17 的小鼠在后中脑和前小脑显示出与 Fgf17 突变小鼠相同的缺陷。因此,Fgf8b 包含的剪接体,而不是 Fgf8a,是 Fgf8 在中脑和小脑发育过程中发挥功能所必需的。