Suppr超能文献

急性肺损伤中关键生物学模块和转录因子的计算识别

Computational identification of key biological modules and transcription factors in acute lung injury.

作者信息

Gharib Sina A, Liles W Conrad, Matute-Bello Gustavo, Glenny Robb W, Martin Thomas R, Altemeier William A

机构信息

Department of Medicine, University of Washington, Seattle, WA, USA.

出版信息

Am J Respir Crit Care Med. 2006 Mar 15;173(6):653-8. doi: 10.1164/rccm.200509-1473OC. Epub 2005 Dec 30.

Abstract

RATIONALE

Mechanical ventilation augments the acute lung injury (ALI) caused by bacterial products. The molecular pathogenesis of this synergistic interaction remains incompletely understood.

OBJECTIVE

We sought to develop a computational framework to systematically identify gene regulatory networks activated in ALI.

METHODS

We have developed a mouse model in which the combination of mechanical ventilation and intratracheal LPS produces significantly more injury to the lung than either insult alone. We used global gene ontology analysis to determine overrepresented biological modules and computational transcription factor analysis to identify putative regulatory factors involved in this model of ALI.

RESULTS

By integrating expression profiling with gene ontology and promoter analysis, we constructed a large-scale regulatory modular map of the important processes activated in ALI. This map assigned differentially expressed genes to highly overrepresented biological modules, including "defense response," "immune response," and "oxidoreductase activity." These modules were then systematically incorporated into a gene regulatory network that consisted of putative transcription factors, such as IFN-stimulated response element, IRF7, and Sp1, that may regulate critical processes involved in the pathogenesis of ALI.

CONCLUSIONS

We present a novel, unbiased, and powerful computational approach to investigate the synergistic effects of mechanical ventilation and LPS in promoting ALI. Our methodology is applicable to any expression profiling experiment involving eukaryotic organisms.

摘要

原理

机械通气会加重由细菌产物引起的急性肺损伤(ALI)。这种协同相互作用的分子发病机制仍未完全阐明。

目的

我们试图建立一个计算框架,以系统地识别在ALI中激活的基因调控网络。

方法

我们建立了一种小鼠模型,其中机械通气与气管内注射脂多糖(LPS)相结合对肺造成的损伤比单独任何一种刺激都要严重得多。我们使用全局基因本体分析来确定过度富集的生物学模块,并通过计算转录因子分析来识别参与该ALI模型的假定调控因子。

结果

通过将表达谱分析与基因本体和启动子分析相结合,我们构建了一个在ALI中激活的重要过程的大规模调控模块图。该图将差异表达基因分配到高度过度富集的生物学模块中,包括“防御反应”、“免疫反应”和“氧化还原酶活性”。然后,这些模块被系统地整合到一个基因调控网络中,该网络由假定的转录因子组成,如干扰素刺激反应元件、IRF7和Sp1,它们可能调控ALI发病机制中涉及的关键过程。

结论

我们提出了一种新颖、无偏且强大的计算方法,用于研究机械通气和LPS在促进ALI方面的协同作用。我们的方法适用于任何涉及真核生物的表达谱分析实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验