Iranian Research Organization for Science and Technology, Tehran, Iran.
Gene. 2013 Dec 1;531(2):212-9. doi: 10.1016/j.gene.2013.09.011. Epub 2013 Sep 13.
Self-proliferation and differentiation into distinct cell types have been made stem cell as a promising target for regenerative medicine. Several key genes can regulate self-renewal and pluripotency of embryonic stem cells (hESCs). They work together and build a transcriptional hierarchy. Coexpression and coregulation of genes control by common regulatory elements on the promoter regions. Consequently, distinct organization and combination of transcription factor binding sites (TFBSs modules) on promoter regions, in view of order and distance, lead to a common specific expression pattern within a set of genes. To gain insights into transcriptional regulation of hESCs, we selected promoter regions of eleven common expressed hESC genes including SOX2, LIN28, STAT3, NANOG, LEFTB, TDGF1, POU5F1, FOXD3, TERF1, REX1 and GDF3 to predict activating regulatory modules on promoters and discover key corresponding transcription factors. Then, promoter regions in human genome were explored for modules and 328 genes containing the same modules were detected. Using microarray data, we verified that 102 of 328 genes commonly upregulate in hESCs. Also, using output data of DNA-protein interaction assays, we found that 42 of all predicted genes are targets of SOX2, NANOG and POU5F1. Additionally, a protein interaction network of hESC genes was constructed based on biological processes, and interestingly, 126 downregulated genes along with upregulated ones identified by promoter analysis were predicted in the network. Based on the results, we suggest that the identified genes, coregulating with common hESC genes, represent a novel approach for gene discovery based on whole genome promoter analysis irrespective of gene expression. Altogether, promoter profiling can be used to expand hESC transcriptional regulatory circuitry by analysis of shared functional sequences between genes. This approach provides a clear image on underlying regulatory mechanism of gene expression profile and offers a novel approach in designing gene networks of stem cell.
自我增殖和分化为不同的细胞类型使干细胞成为再生医学的有前途的靶标。几个关键基因可以调节胚胎干细胞(hESC)的自我更新和多能性。它们共同作用,构建一个转录层次结构。启动子区域上的共同调控元件控制基因的共表达和核心调控。因此,启动子区域上转录因子结合位点(TFBSs 模块)的不同组织和组合,就顺序和距离而言,导致一组基因内的共同特定表达模式。为了深入了解 hESC 的转录调控,我们选择了十一个常见表达的 hESC 基因的启动子区域,包括 SOX2、LIN28、STAT3、NANOG、LEFTB、TDGF1、POU5F1、FOXD3、TERF1、REX1 和 GDF3,以预测启动子上的激活调控模块,并发现关键的相应转录因子。然后,在人类基因组中探索模块,并检测到包含相同模块的 328 个基因。使用微阵列数据,我们验证了 102 个 328 个基因在 hESC 中共同上调。此外,使用 DNA-蛋白质相互作用测定的输出数据,我们发现所有预测基因中有 42 个是 SOX2、NANOG 和 POU5F1 的靶标。此外,基于生物过程构建了 hESC 基因的蛋白质相互作用网络,有趣的是,在网络中预测到了启动子分析识别的上调基因和下调基因的 126 个。基于这些结果,我们建议所识别的基因与常见的 hESC 基因共同调节,代表了一种基于全基因组启动子分析的新的基因发现方法,而与基因表达无关。总之,启动子分析可用于通过分析基因之间的共享功能序列来扩展 hESC 转录调控电路。这种方法提供了基因表达谱潜在调控机制的清晰图像,并为设计干细胞基因网络提供了一种新方法。