Tan Qihua, Christiansen Lene, Bathum Lise, Li Shuxia, Kruse Torben A, Christensen Kaare
Department of Clinical Biochemistry and Genetics, Odense University Hospital, DK-5000 Odense, Denmark.
Genetics. 2006 Mar;172(3):1821-8. doi: 10.1534/genetics.105.050914. Epub 2005 Dec 30.
Although the case-control or the cross-sectional design has been popular in genetic association studies of human longevity, such a design is prone to false positive results due to sampling bias and a potential secular trend in gene-environment interactions. To avoid these problems, the cohort or follow-up study design has been recommended. With the observed individual survival information, the Cox regression model has been used for single-locus data analysis. In this article, we present a novel survival analysis model that combines population survival with individual genotype and phenotype information in assessing the genetic association with human longevity in cohort studies. By monitoring the changes in the observed genotype frequencies over the follow-up period in a birth cohort, we are able to assess the effects of the genotypes and/or haplotypes on individual survival. With the estimated parameters, genotype- and/or haplotype-specific survival and hazard functions can be calculated without any parametric assumption on the survival distribution. In addition, our model estimates haplotype frequencies in a birth cohort over the follow-up time, which is not observable in the multilocus genotype data. A computer simulation study was conducted to specifically assess the performance and power of our haplotype-based approach for given risk and frequency parameters under different sample sizes. Application of our method to paraoxonase 1 genotype data detected a haplotype that significantly reduces carriers' hazard of death and thus reveals and stresses the important role of genetic variation in maintaining human survival at advanced ages.
尽管病例对照或横断面设计在人类长寿的基因关联研究中很常见,但由于抽样偏差以及基因-环境相互作用中潜在的长期趋势,这种设计容易产生假阳性结果。为避免这些问题,推荐采用队列或随访研究设计。利用观察到的个体生存信息,Cox回归模型已被用于单基因座数据分析。在本文中,我们提出了一种新颖的生存分析模型,该模型在队列研究中评估与人类长寿的基因关联时,将群体生存与个体基因型和表型信息相结合。通过监测出生队列随访期间观察到的基因型频率变化,我们能够评估基因型和/或单倍型对个体生存的影响。利用估计的参数,可以在不对生存分布做任何参数假设的情况下计算基因型和/或单倍型特异性的生存和风险函数。此外,我们的模型估计了出生队列随访期间的单倍型频率,这在多基因座基因型数据中是不可观察到的。我们进行了一项计算机模拟研究,以在不同样本量下针对给定的风险和频率参数具体评估基于单倍型方法的性能和功效。将我们的方法应用于对氧磷酶1基因型数据时,检测到一种显著降低携带者死亡风险的单倍型,从而揭示并强调了基因变异在维持人类高龄生存中的重要作用。