Suppr超能文献

全身性肌张力障碍的动物模型。

Animal models of generalized dystonia.

作者信息

Raike Robert S, Jinnah H A, Hess Ellen J

机构信息

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

出版信息

NeuroRx. 2005 Jul;2(3):504-12. doi: 10.1602/neurorx.2.3.504.

Abstract

Dystonia is a prevalent neurological disorder characterized by abnormal co-contractions of antagonistic muscle groups that produce twisting movements and abnormal postures. The disorder may be inherited, arise sporadically, or result from brain insult. Dystonia is a heterogeneous disorder because patients may exhibit focal or generalized symptoms associated with abnormalities in many brain regions including basal ganglia and cerebellum. Elucidating the pathogenic mechanisms underlying dystonia has therefore been challenging. Animal models of dystonia exhibit similar heterogeneity and are useful for understanding pathogenesis. The neurochemical and neurophysiological abnormalities in rodents with idiopathic generalized dystonia suggest that dysfunctional output from basal ganglia, cerebellum, or from multiple systems is the cause of motor dysfunction. Findings from drug- or toxin-induced dystonia in rodents and nonhuman primates mirror the genetic models. The parallels between dystonia in humans and animals suggest that the models will continue to prove useful in determining pathogenesis. Furthermore, detailed characterization of the existing models of dystonia and the development of new models hold promise for the identification of novel therapeutics.

摘要

肌张力障碍是一种常见的神经系统疾病,其特征是拮抗肌群异常共同收缩,产生扭转运动和异常姿势。该疾病可能是遗传性的,也可能是散发性的,或者由脑部损伤引起。肌张力障碍是一种异质性疾病,因为患者可能表现出与包括基底神经节和小脑在内的许多脑区异常相关的局灶性或全身性症状。因此,阐明肌张力障碍的致病机制具有挑战性。肌张力障碍的动物模型表现出类似的异质性,有助于理解发病机制。特发性全身性肌张力障碍啮齿动物的神经化学和神经生理学异常表明,基底神经节、小脑或多个系统的功能失调输出是运动功能障碍的原因。啮齿动物和非人灵长类动物药物或毒素诱导的肌张力障碍研究结果与遗传模型相似。人类和动物肌张力障碍之间的相似之处表明,这些模型将继续在确定发病机制方面发挥作用。此外,对现有肌张力障碍模型的详细表征和新模型的开发有望确定新的治疗方法。

相似文献

1
Animal models of generalized dystonia.
NeuroRx. 2005 Jul;2(3):504-12. doi: 10.1602/neurorx.2.3.504.
2
Pathology of idiopathic dystonia: findings from genetic animal models.
Prog Neurobiol. 1998 Apr;54(6):633-77. doi: 10.1016/s0301-0082(97)00089-0.
3
The basal ganglia and cerebellum interact in the expression of dystonic movement.
Brain. 2008 Sep;131(Pt 9):2499-509. doi: 10.1093/brain/awn168. Epub 2008 Jul 26.
4
The cerebellum and dystonia.
Handb Clin Neurol. 2018;155:259-272. doi: 10.1016/B978-0-444-64189-2.00017-2.
5
Physiology of Dystonia: Animal Studies.
Int Rev Neurobiol. 2023;169:163-215. doi: 10.1016/bs.irn.2023.05.004. Epub 2023 May 17.
6
Limited regional cerebellar dysfunction induces focal dystonia in mice.
Neurobiol Dis. 2013 Jan;49:200-10. doi: 10.1016/j.nbd.2012.07.019. Epub 2012 Jul 28.
7
Abnormal cerebellar signaling induces dystonia in mice.
J Neurosci. 2002 Sep 1;22(17):7825-33. doi: 10.1523/JNEUROSCI.22-17-07825.2002.
8
Animal models of dystonia: Lessons from a mutant rat.
Neurobiol Dis. 2011 May;42(2):152-61. doi: 10.1016/j.nbd.2010.11.006. Epub 2010 Nov 21.
9
Experimental models of dystonia.
Int Rev Neurobiol. 2011;98:551-72. doi: 10.1016/B978-0-12-381328-2.00020-1.
10
The neurobiological basis for novel experimental therapeutics in dystonia.
Neurobiol Dis. 2019 Oct;130:104526. doi: 10.1016/j.nbd.2019.104526. Epub 2019 Jul 4.

引用本文的文献

3
How Many Types of Dystonia? Pathophysiological Considerations.
Front Neurol. 2018 Feb 23;9:12. doi: 10.3389/fneur.2018.00012. eCollection 2018.
4
Therapeutic Use of Non-invasive Brain Stimulation in Dystonia.
Front Neurosci. 2017 Jul 25;11:423. doi: 10.3389/fnins.2017.00423. eCollection 2017.
5
Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia.
Front Neural Circuits. 2016 Nov 10;10:90. doi: 10.3389/fncir.2016.00090. eCollection 2016.
6
Acute Dystonia Following a Switch in Treatment from Atomoxetine to Low-dose Aripiprazole.
Clin Psychopharmacol Neurosci. 2016 May 31;14(2):221-5. doi: 10.9758/cpn.2016.14.2.221.
8
Dystonia and cerebellar degeneration in the leaner mouse mutant.
Brain Res. 2015 Jun 22;1611:56-64. doi: 10.1016/j.brainres.2015.03.011. Epub 2015 Mar 16.
9
Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia.
Prog Neurobiol. 2015 Apr;127-128:91-107. doi: 10.1016/j.pneurobio.2015.02.002. Epub 2015 Feb 17.
10
Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism.
J Neurosci. 2014 Aug 27;34(35):11723-32. doi: 10.1523/JNEUROSCI.1409-14.2014.

本文引用的文献

1
Two novel CACNA1A gene mutations associated with episodic ataxia type 2 and interictal dystonia.
Arch Neurol. 2005 Feb;62(2):314-6. doi: 10.1001/archneur.62.2.314.
2
Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque.
J Neurophysiol. 2005 Jun;93(6):3165-76. doi: 10.1152/jn.00971.2004. Epub 2005 Feb 9.
3
Neuronal activity in the basal ganglia and thalamus in patients with dystonia.
Clin Neurophysiol. 2004 Nov;115(11):2542-57. doi: 10.1016/j.clinph.2004.06.006.
4
Increased excitability in cortico-striatal synaptic pathway in a model of paroxysmal dystonia.
Neurobiol Dis. 2004 Jun;16(1):236-45. doi: 10.1016/j.nbd.2004.01.012.
7
Expression of c-FOS in the brain after activation of L-type calcium channels.
Dev Neurosci. 2003 Nov-Dec;25(6):403-11. doi: 10.1159/000075666.
8
Clinical spectrum of episodic ataxia type 2.
Neurology. 2004 Jan 13;62(1):17-22. doi: 10.1212/01.wnl.0000101675.61074.50.
9
Regulation of tyrosine hydroxylase expression in tottering mouse Purkinje cells.
Neurotox Res. 2003;5(7):521-8. doi: 10.1007/BF03033162.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验