Jiang Xuan, Dai Hui, Leong Kam W, Goh Suat-Hong, Mao Hai-Quan, Yang Yi-Yan
Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore.
J Gene Med. 2006 Apr;8(4):477-87. doi: 10.1002/jgm.868.
BACKGROUND: Chitosan has been shown to be a non-toxic and efficient vector for in vitro gene transfection and in vivo gene delivery through pulmonary and oral administrations. Recently, we have shown that chitosan/DNA nanoparticles could mediate high levels of gene expression following intrabiliary infusion 1. In this study, we have examined the possibility of using polyethylene glycol (PEG)-grafted chitosan/DNA complexes to deliver genes to the liver through bile duct and portal vein infusions. METHODS: PEG (Mw: 5 kDa) was grafted onto chitosan (Mw: 47 kDa, deacetylation degree: 94%) with grafting degrees of 3.6% and 9.6% (molar percentage of chitosan monosaccharide units grafted with PEG). The stability of chitosan-g-PEG/DNA complexes was studied by measuring the change in particle size and by agarose gel electrophoresis against bile or serum challenge. The influence of PEG grafting on gene transfection efficiency was evaluated in HepG2 cells using luciferase reporter gene. Chitosan and chitosan-g-PEG/DNA complexes were delivered to the liver through bile duct and portal vein infusions with a syringe pump. Gene expression in the liver and the distribution of gene expression in other organs were evaluated. The acute liver toxicity of chitosan and chitosan-g-PEG/DNA complexes was examined by measuring serum alanine aminotranferase (ALT) and aspartate aminotransferase (AST) activities as a function of time. RESULTS: Both chitosan and chitosan-g-PEG displayed comparable gene transfection efficiency in HepG2 cells. After challenge with serum and bile, chitosan-g-PEG/DNA complexes, especially those prepared with chitosan-g-PEG (GD = 9.6%), did not form large aggregates like chitosan/DNA complexes but remained stable for up to 30 min. In addition, chitosan-g-PEG prevented the degradation of DNA in the presence of serum and bile. On day 3 after bile duct infusion, chitosan-g-PEG (GD = 9.6%)/DNA complexes mediated three times higher gene expression in the liver than chitosan/DNA complexes and yielded background levels of gene expression in other organs. On day 1 following portal vein infusion, gene expression level induced by chitosan/DNA complexes was hardly detectable but chitosan-g-PEG (GD = 9.6%) mediated significant transgene expression. Interestingly, transgene expression by chitosan-g-PEG/DNA complexes in other organs after portal vein infusion increased with increasing grafting degree of PEG. The ALT and AST assays indicated that grafting of PEG to chitosan reduced the acute liver toxicity towards the complexes. CONCLUSION: This study demonstrated the potential of chitosan-g-PEG as a safe and more stable gene carrier to the liver.
背景:壳聚糖已被证明是一种无毒且高效的载体,可用于体外基因转染以及通过肺部和口服给药实现体内基因递送。最近,我们已经表明壳聚糖/DNA纳米颗粒在胆管内输注后可介导高水平的基因表达[1]。在本研究中,我们研究了使用聚乙二醇(PEG)接枝的壳聚糖/DNA复合物通过胆管和门静脉输注将基因递送至肝脏的可能性。 方法:将PEG(分子量:5 kDa)接枝到壳聚糖(分子量:47 kDa,脱乙酰度:94%)上,接枝度分别为3.6%和9.6%(接枝PEG的壳聚糖单糖单元的摩尔百分比)。通过测量粒径变化以及针对胆汁或血清攻击进行琼脂糖凝胶电泳来研究壳聚糖-g-PEG/DNA复合物的稳定性。使用荧光素酶报告基因在HepG2细胞中评估PEG接枝对基因转染效率的影响。通过注射泵将壳聚糖和壳聚糖-g-PEG/DNA复合物通过胆管和门静脉输注递送至肝脏。评估肝脏中的基因表达以及其他器官中基因表达的分布。通过测量血清丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST)活性随时间的变化来检测壳聚糖和壳聚糖-g-PEG/DNA复合物的急性肝毒性。 结果:壳聚糖和壳聚糖-g-PEG在HepG2细胞中显示出相当的基因转染效率。在用血清和胆汁攻击后,壳聚糖-g-PEG/DNA复合物,尤其是用壳聚糖-g-PEG(接枝度 = 9.6%)制备的复合物,不会像壳聚糖/DNA复合物那样形成大的聚集体,而是在长达30分钟内保持稳定。此外,壳聚糖-g-PEG在血清和胆汁存在下可防止DNA降解。在胆管输注后第3天,壳聚糖-g-PEG(接枝度 = 9.6%)/DNA复合物介导肝脏中的基因表达比壳聚糖/DNA复合物高三倍,并且在其他器官中产生背景水平的基因表达。在门静脉输注后第1天,壳聚糖/DNA复合物诱导的基因表达水平几乎检测不到,但壳聚糖-g-PEG(接枝度 = 9.6%)介导了显著的转基因表达。有趣的是,门静脉输注后壳聚糖-g-PEG/DNA复合物在其他器官中的转基因表达随着PEG接枝度的增加而增加。ALT和AST测定表明,将PEG接枝到壳聚糖上降低了复合物对肝脏的急性毒性。 结论:本研究证明了壳聚糖-g-PEG作为一种安全且更稳定的肝脏基因载体的潜力。
Biotechnol Appl Biochem. 2007-4
J Control Release. 2008-10-21
Nanomedicine (Lond). 2024
Pharmaceutics. 2024-4-27
Polymers (Basel). 2020-5-21
Mar Drugs. 2019-6-25
Comput Struct Biotechnol J. 2019-4-13