Groot Koerkamp Bas, Myriam Hunink M G, Stijnen Theo, Weinstein Milton C
Department of Health Policy and Management, Harvard School of Public Health, Harvard Center for Risk Analysis, Boston, MA, USA.
Health Econ. 2006 Apr;15(4):383-92. doi: 10.1002/hec.1064.
Decisions in health care must be made, despite uncertainty about benefits, risks, and costs. Value of information analysis is a theoretically sound method to estimate the expected value of future quantitative research pertaining to an uncertain decision. If the expected value of future research does not exceed the cost of research, additional research is not justified, and decisions should be based on current evidence, despite the uncertainty. To assess the importance of individual parameters relevant to a decision, different value of information methods have been suggested. The generally recommended method assumes that the expected value of perfect knowledge concerning a parameter is estimated as the reduction in expected opportunity loss. This method, however, results in biased expected values and incorrect importance ranking of parameters. The objective of this paper is to set out the correct methods to estimate the partial expected value of perfect information and to demonstrate why the generally recommended method is incorrect conceptually and mathematically.
尽管在收益、风险和成本方面存在不确定性,但医疗保健领域仍需做出决策。信息价值分析是一种理论上合理的方法,用于估计与不确定决策相关的未来定量研究的预期价值。如果未来研究的预期价值不超过研究成本,那么进行额外的研究就不合理,尽管存在不确定性,决策仍应基于当前证据。为了评估与决策相关的各个参数的重要性,人们提出了不同的信息价值方法。普遍推荐的方法假定,关于一个参数的完美知识的预期价值被估计为预期机会损失的减少。然而,这种方法会导致预期价值有偏差,以及参数的重要性排序错误。本文的目的是阐述估计完美信息部分预期价值的正确方法,并说明为什么普遍推荐的方法在概念和数学上是错误的。