Suppr超能文献

Hydrophobicity, shape, and pi-electron contributions during translesion DNA synthesis.

作者信息

Zhang Xuemei, Lee Irene, Zhou Xiang, Berdis Anthony J

机构信息

Departments of Pharmacology and Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.

出版信息

J Am Chem Soc. 2006 Jan 11;128(1):143-9. doi: 10.1021/ja0546830.

Abstract

Translesion DNA synthesis, the ability of a DNA polymerase to misinsert a nucleotide opposite a damaged DNA template, represents a common route toward mutagenesis and possibly disease development. To further define the mechanism of this promutagenic process, we synthesized and tested the enzymatic incorporation of two isosteric 5-substituted indolyl-2'deoxyriboside triphosphates opposite an abasic site. The catalytic efficiency for the incorporation of the 5-cyclohexene-indole derivative opposite an abasic site is 75-fold greater than that for the 5-cyclohexyl-indole derivative. The higher efficiency reflects a substantial increase in the k(pol) value (compare 25 versus 0.5 s(-1), respectively) as opposed to an influence on ground-state binding of either non-natural nucleotide. The faster k(pol) value for the 5-cyclohexene-indole derivative indicates that pi-electron density enhances the rate of the enzymatic conformational change step required for insertion opposite the abasic site. However, the kinetic dissociation constants for the non-natural nucleotides are identical and indicate that pi-electron density does not directly influence ground-state binding opposite the DNA lesion. Surprisingly, each non-natural nucleotide can be incorporated opposite natural templating bases, albeit with a greatly reduced catalytic efficiency. In this instance, the lower catalytic efficiency is caused by a substantial decrease in the k(pol) value rather than perturbations in ground-state binding. Collectively, these data indicate that the rate of the conformational change during translesion DNA synthesis depends on pi-electron density, while the enhancement in ground-state binding appears related to the size and shape of the non-natural nucleotide.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验