Suppr超能文献

通用碱基的复制为研究 DNA 聚合和焦磷酸解过程中熵的作用提供了独特的视角。

Replication of a universal nucleobase provides unique insight into the role of entropy during DNA polymerization and pyrophosphorolysis.

机构信息

Department of Pharmacology, Case Western Reserve University,10900 Euclid Avenue, Cleveland, Ohio 44106, USA.

出版信息

Biochemistry. 2010 Apr 13;49(14):3009-23. doi: 10.1021/bi901523y.

Abstract

Most models accounting for the efficiency and fidelity of DNA polymerization invoke the use of either hydrogen bonding contacts or complementarity of shape and size between the formed base pair. This report evaluates these mechanisms by quantifying the ability of a high-fidelity DNA polymerase to replicate 5-nitroindole, a purine mimetic devoid of classic hydrogen bonding capabilities. 5-NITP acts as a universal nucleotide since it is incorporated opposite any of the four natural nucleobases with nearly equal efficiencies. Surprising, the polymerization reaction is not reciprocal as natural nucleotides are poorly incorporated opposite 5-nitroindole in the template strand. Incorporation opposite 5-nitroindole is more efficient using natural nucleotides containing various modifications that increase their base stacking potential. However, 5-substituted indolyl nucleotides that contain pi-electron and/or hydrophobic groups are incorporated opposite the non-natural nucleobase with the highest catalytic efficiencies. The collective data set indicate that replication of a non-natural nucleobase is driven by a combination of the hydrophobic nature and pi-electron surface area of the incoming nucleotide. In this mechanism, the overall hydrophobicity of the incoming nucleobase overcomes the lack of hydrogen bonding groups that are generally required for optimal DNA polymerization. However, the lack of hydrogen bonds between base pairs prevents primer extension. This final aspect is manifest by the appearance of unusually high pyrophosphorolysis activity by the T4 DNA polymerase that is only observed with the non-natural nucleobase in the template. These results highlight the importance of hydrogen bonding interactions during primer extension and pyrophosphorolysis.

摘要

大多数解释 DNA 聚合效率和保真度的模型都采用氢键接触或形成碱基对的形状和大小互补的机制。本报告通过量化高保真 DNA 聚合酶复制 5-硝基吲哚(一种缺乏经典氢键能力的嘌呤类似物)的能力来评估这些机制。5-NITP 作为一种通用核苷酸,因为它可以与任何四种天然核碱基几乎以相等的效率配对。令人惊讶的是,聚合反应不是相互的,因为天然核苷酸在模板链中与 5-硝基吲哚的配对掺入效率很低。使用各种修饰物增加其碱基堆积潜力的天然核苷酸,其掺入对 5-硝基吲哚的反应更有效。然而,含有π电子和/或疏水性基团的 5-取代吲哚核苷酸与非天然碱基的结合具有最高的催化效率。总的数据集表明,非天然碱基的复制是由进入核苷酸的疏水性和π电子表面积的组合驱动的。在这种机制中,进入碱基的整体疏水性克服了通常需要最佳 DNA 聚合的氢键基团的缺乏。然而,碱基对之间缺乏氢键会阻止引物延伸。T4 DNA 聚合酶的异常高的焦磷酸解活性表现出这种最后一个方面,只有在模板中存在非天然碱基时才会观察到这种活性。这些结果强调了在引物延伸和焦磷酸解过程中氢键相互作用的重要性。

相似文献

2
Evaluating the contributions of desolvation and base-stacking during translesion DNA synthesis.
Org Biomol Chem. 2004 Jun 21;2(12):1703-11. doi: 10.1039/b401732c. Epub 2004 May 19.
3
Non-natural nucleotides as probes for the mechanism and fidelity of DNA polymerases.
Biochim Biophys Acta. 2010 May;1804(5):1064-80. doi: 10.1016/j.bbapap.2009.08.023. Epub 2009 Sep 3.
4
Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis.
EMBO J. 2005 Sep 7;24(17):2957-67. doi: 10.1038/sj.emboj.7600786. Epub 2005 Aug 18.
5
Exploring the roles of nucleobase desolvation and shape complementarity during the misreplication of O(6)-methylguanine.
J Mol Biol. 2011 Sep 23;412(3):325-39. doi: 10.1016/j.jmb.2011.07.011. Epub 2011 Jul 23.
6
Evaluating the contribution of base stacking during translesion DNA replication.
Biochemistry. 2004 Jan 20;43(2):393-404. doi: 10.1021/bi034948s.
8
Is a thymine dimer replicated via a transient abasic site intermediate? A comparative study using non-natural nucleotides.
Biochemistry. 2007 Apr 17;46(15):4486-98. doi: 10.1021/bi602438t. Epub 2007 Mar 23.

引用本文的文献

1
Mass-spectrometry analysis of modifications at DNA termini induced by DNA polymerases.
Sci Rep. 2017 Jul 27;7(1):6674. doi: 10.1038/s41598-017-06136-9.
2
The RNA triphosphatase domain of L protein of Rinderpest virus exhibits pyrophosphatase and tripolyphosphatase activities.
Virus Genes. 2016 Oct;52(5):743-7. doi: 10.1007/s11262-016-1353-7. Epub 2016 May 12.
3
The Toolbox for Modified Aptamers.
Mol Biotechnol. 2016 Feb;58(2):79-92. doi: 10.1007/s12033-015-9907-9.
4
5
Expanding the scope of replicable unnatural DNA: stepwise optimization of a predominantly hydrophobic base pair.
J Am Chem Soc. 2013 Apr 10;135(14):5408-19. doi: 10.1021/ja312148q. Epub 2013 Apr 2.
6
Exploring the roles of nucleobase desolvation and shape complementarity during the misreplication of O(6)-methylguanine.
J Mol Biol. 2011 Sep 23;412(3):325-39. doi: 10.1016/j.jmb.2011.07.011. Epub 2011 Jul 23.
7
Quantifying the energetic contributions of desolvation and π-electron density during translesion DNA synthesis.
Nucleic Acids Res. 2011 Mar;39(4):1623-37. doi: 10.1093/nar/gkq925. Epub 2010 Oct 15.

本文引用的文献

1
Altered order of substrate binding by DNA polymerase X from African Swine Fever virus.
Biochemistry. 2008 Jul 29;47(30):7875-87. doi: 10.1021/bi800731m. Epub 2008 Jul 4.
3
Enhancing the "A-rule" of translesion DNA synthesis: promutagenic DNA synthesis using modified nucleoside triphosphates.
Biochemistry. 2007 Dec 4;46(48):13752-61. doi: 10.1021/bi701328h. Epub 2007 Nov 6.
4
Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA.
Org Biomol Chem. 2007 Nov 21;5(22):3623-30. doi: 10.1039/b712480e. Epub 2007 Oct 12.
5
Minor groove hydrogen bonds and the replication of unnatural base pairs.
J Am Chem Soc. 2007 May 2;129(17):5551-7. doi: 10.1021/ja068282b. Epub 2007 Apr 6.
7
Remarkable sensitivity to DNA base shape in the DNA polymerase active site.
Angew Chem Int Ed Engl. 2006 Mar 13;45(12):1974-9. doi: 10.1002/anie.200504296.
9
Hydrophobicity, shape, and pi-electron contributions during translesion DNA synthesis.
J Am Chem Soc. 2006 Jan 11;128(1):143-9. doi: 10.1021/ja0546830.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验