Suppr超能文献

针对深层地下地热环境中嗜热菌和超嗜热菌的16S rRNA基因进行的选择性系统发育分析。

Selective phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments.

作者信息

Kimura Hiroyuki, Sugihara Maki, Kato Kenji, Hanada Satoshi

机构信息

Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

出版信息

Appl Environ Microbiol. 2006 Jan;72(1):21-7. doi: 10.1128/AEM.72.1.21-27.2006.

Abstract

Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76 degrees C) and river water (14 degrees C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82 degrees C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84 degrees C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84 degrees C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.

摘要

通过深钻获得的深部地下样本很可能被钻井液中的嗜温微生物污染,这可能会影响利用16S rRNA基因克隆文库分析来确定地热微生物群落结构。为了消除嗜温菌PCR扩增的16S rRNA基因可能造成的污染,在构建克隆文库之前,基于16S rRNA基因的G+C含量与大多数已知原核生物培养物的最适生长温度之间的强相关性,采用了热变性和酶消化相结合的方法。为了验证该技术,使用温泉水(76摄氏度)和河水(14摄氏度)模拟被钻井液污染的深部地下样本。分别从各个样本中提取DNA并进行16S rRNA基因的PCR扩增后,观察到河水的扩增产物在82摄氏度时变性,并被核酸外切酶I(Exo I)完全消化,而温泉水的扩增产物在84摄氏度变性并用Exo I酶消化后仍保持完整。将从这两个样本中提取的DNA混合,用作16S rRNA基因扩增的模板。在构建克隆文库之前,将扩增的rRNA基因在84摄氏度变性并用Exo I消化。结果表明,河水中的16S rRNA基因序列几乎被完全消除,而温泉水中的序列则保留了下来。

相似文献

2
Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere.
Appl Environ Microbiol. 2007 Apr;73(7):2110-7. doi: 10.1128/AEM.02800-06. Epub 2007 Feb 2.
3
Diversity and abundance of Bacteria and Archaea in the Bor Khlueng Hot Spring in Thailand.
J Basic Microbiol. 2004;44(6):430-44. doi: 10.1002/jobm.200410388.
4
Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester.
Environ Microbiol. 2005 Aug;7(8):1104-15. doi: 10.1111/j.1462-2920.2005.00795.x.
5
Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya.
BMC Microbiol. 2016 Jul 7;16(1):136. doi: 10.1186/s12866-016-0748-x.
6
Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal 16S rRNA genes.
FEMS Microbiol Lett. 2011 Jun;319(1):34-43. doi: 10.1111/j.1574-6968.2011.02267.x. Epub 2011 Apr 4.
7
Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods.
J Basic Microbiol. 2014 Nov;54(11):1240-50. doi: 10.1002/jobm.201300999. Epub 2014 Apr 16.
8
An analysis of geothermal and carbonic springs in the western United States sustained by deep fluid inputs.
Geobiology. 2014 Jan;12(1):83-98. doi: 10.1111/gbi.12070. Epub 2013 Nov 29.

引用本文的文献

2
Diversity and Distribution of Anaerobic Ammonium Oxidation Bacteria in Hot Springs of Conghua, China.
Front Microbiol. 2022 Jan 25;12:739234. doi: 10.3389/fmicb.2021.739234. eCollection 2021.
3
A positive correlation between GC content and growth temperature in prokaryotes.
BMC Genomics. 2022 Feb 9;23(1):110. doi: 10.1186/s12864-022-08353-7.
5
TEMPURA: Database of Growth TEMPeratures of Usual and RAre Prokaryotes.
Microbes Environ. 2020;35(3). doi: 10.1264/jsme2.ME20074.
6
Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan).
Microbes Environ. 2019 Dec 27;34(4):374-387. doi: 10.1264/jsme2.ME19047. Epub 2019 Nov 2.
8
Temperature-dependent expression of different guanine-plus-cytosine content 16S rRNA genes in Haloarcula strains of the class Halobacteria.
Antonie Van Leeuwenhoek. 2019 Feb;112(2):187-201. doi: 10.1007/s10482-018-1144-3. Epub 2018 Aug 20.
9
Expression and Function of Different Guanine-Plus-Cytosine Content 16S rRNA Genes in at Different Temperatures.
Front Microbiol. 2017 Mar 28;8:482. doi: 10.3389/fmicb.2017.00482. eCollection 2017.
10
Draft Genome Sequence of Tepidimonas taiwanensis Strain VT154-175.
Genome Announc. 2016 Sep 8;4(5):e00942-16. doi: 10.1128/genomeA.00942-16.

本文引用的文献

3
Phylogenetic diversity of drinking water bacteria in a distribution system simulator.
J Appl Microbiol. 2004;96(5):954-64. doi: 10.1111/j.1365-2672.2004.02229.x.
6
Distribution of microorganisms in the subsurface of the manus basin hydrothermal vent field in Papua New Guinea.
Appl Environ Microbiol. 2003 Jan;69(1):644-8. doi: 10.1128/AEM.69.1.644-648.2003.
10
Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing.
Appl Environ Microbiol. 2002 Mar;68(3):1446-53. doi: 10.1128/AEM.68.3.1446-1453.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验