Zhang Bo, Carlson Ross, Srienc Friedrich
Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA.
Appl Environ Microbiol. 2006 Jan;72(1):536-43. doi: 10.1128/AEM.72.1.536-543.2006.
Polyhydroxyalkanoates (PHAs) have received considerable interest as renewable-resource-based, biodegradable, and biocompatible plastics with a wide range of potential applications. We have engineered the synthesis of PHA polymers composed of monomers ranging from 4 to 14 carbon atoms in either the cytosol or the peroxisome of Saccharomyces cerevisiae by harnessing intermediates of fatty acid metabolism. Cytosolic PHA production was supported by establishing in the cytosol critical beta-oxidation chemistries which are found natively in peroxisomes. This platform was utilized to supply medium-chain (C6 to C14) PHA precursors from both fatty acid degradation and synthesis to a cytosolically expressed medium-chain-length (mcl) polymerase from Pseudomonas oleovorans. Synthesis of short-chain-length PHAs (scl-PHAs) was established in the peroxisome of a wild-type yeast strain by targeting the Ralstonia eutropha scl polymerase to the peroxisome. This strain, harboring a peroxisomally targeted scl-PHA synthase, accumulated PHA up to approximately 7% of its cell dry weight. These results indicate (i) that S. cerevisiae expressing a cytosolic mcl-PHA polymerase or a peroxisomal scl-PHA synthase can use the 3-hydroxyacyl coenzyme A intermediates from fatty acid metabolism to synthesize PHAs and (ii) that fatty acid degradation is also possible in the cytosol as beta-oxidation might not be confined only to the peroxisomes. Polymers of even-numbered, odd-numbered, or a combination of even- and odd-numbered monomers can be controlled by feeding the appropriate substrates. This ability should permit the rational design and synthesis of polymers with desired material properties.
聚羟基脂肪酸酯(PHA)作为基于可再生资源、可生物降解且具有生物相容性的塑料,在众多潜在应用领域备受关注。我们通过利用脂肪酸代谢中间体,在酿酒酵母的胞质溶胶或过氧化物酶体中设计合成了由4至14个碳原子的单体组成的PHA聚合物。通过在胞质溶胶中建立过氧化物酶体中天然存在的关键β-氧化化学过程,支持了胞质PHA的生产。该平台被用于将脂肪酸降解和合成产生的中链(C6至C14)PHA前体供应给胞质中表达的来自食油假单胞菌的中链长度(mcl)聚合酶。通过将嗜油产碱杆菌的短链长度(scl)聚合酶靶向过氧化物酶体,在野生型酵母菌株的过氧化物酶体中建立了短链长度PHA(scl-PHA)的合成。该菌株含有过氧化物酶体靶向的scl-PHA合酶,积累的PHA高达其细胞干重的约7%。这些结果表明:(i)表达胞质mcl-PHA聚合酶或过氧化物酶体scl-PHA合酶的酿酒酵母可以利用脂肪酸代谢产生的3-羟基酰基辅酶A中间体来合成PHA;(ii)由于β-氧化可能不仅局限于过氧化物酶体,脂肪酸降解在胞质溶胶中也是可能的。通过投喂合适的底物,可以控制偶数、奇数或偶数与奇数单体组合的聚合物。这种能力应该允许对具有所需材料特性的聚合物进行合理设计和合成。