Suppr超能文献

利用酵母细胞器进行代谢工程。

Harnessing yeast organelles for metabolic engineering.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA.

Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, USA.

出版信息

Nat Chem Biol. 2017 Aug;13(8):823-832. doi: 10.1038/nchembio.2429. Epub 2017 Jul 18.

Abstract

Each subcellular compartment in yeast offers a unique physiochemical environment and metabolite, enzyme, and cofactor composition. While yeast metabolic engineering has focused on assembling pathways in the cell cytosol, there is growing interest in embracing subcellular compartmentalization. Beyond harnessing distinct organelle properties, physical separation of organelles from the cytosol has the potential to eliminate metabolic crosstalk and enhance compartmentalized pathway efficiency. In this Perspective we review the state of the art in yeast subcellular engineering, highlighting the benefits of targeting biosynthetic pathways to subcellular compartments, including mitochondria, peroxisomes, the ER and/or Golgi, vacuoles, and the cell wall, in different yeast species. We compare the performances of strains developed with subcellular engineering to those of native producers or yeast strains previously engineered with cytosolic pathways. We also identify important challenges that lie ahead, which need to be addressed for organelle engineering to become as mainstream as cytosolic engineering in academia and industry.

摘要

酵母的每个亚细胞区室都提供独特的物理化学环境以及独特的代谢物、酶和辅助因子组成。尽管酵母代谢工程主要集中在细胞胞质中组装途径,但人们越来越感兴趣于采用亚细胞区室化。除了利用不同细胞器的特性外,细胞器与胞质的物理分离还有可能消除代谢串扰并提高区室化途径的效率。在本观点中,我们综述了酵母亚细胞工程的最新进展,重点介绍了将生物合成途径靶向到不同酵母物种的亚细胞区室(包括线粒体、过氧化物酶体、内质网和/或高尔基体、液泡和细胞壁)的好处。我们比较了使用亚细胞工程开发的菌株与天然产物或以前使用胞质途径工程化的酵母菌株的性能。我们还确定了未来需要解决的重要挑战,以使细胞器工程在学术界和工业界像胞质工程一样主流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验