Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Göteborg, Sweden.
AMB Express. 2012 Sep 25;2(1):52. doi: 10.1186/2191-0855-2-52.
Through metabolic engineering microorganisms can be engineered to produce new products and further produce these with higher yield and productivities. Here, we expressed the bacterial polyhydroxybutyrate (PHB) pathway in the yeast Saccharomyces cerevisiae and we further evaluated the effect of engineering the formation of acetyl coenzyme A (acetyl-CoA), an intermediate of the central carbon metabolism and precursor of the PHB pathway, on heterologous PHB production by yeast. We engineered the acetyl-CoA metabolism by co-transformation of a plasmid containing genes for native S. cerevisiae alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6), acetyl-CoA acetyltransferase (ERG10) and a Salmonella enterica acetyl-CoA synthetase variant (acsL641P), resulting in acetoacetyl-CoA overproduction, together with a plasmid containing the PHB pathway genes coding for acetyl-CoA acetyltransferase (phaA), NADPH-linked acetoacetyl-CoA reductase (phaB) and poly(3-hydroxybutyrate) polymerase (phaC) from Ralstonia eutropha H16. Introduction of the acetyl-CoA plasmid together with the PHB plasmid, improved the productivity of PHB more than 16 times compared to the reference strain used in this study, as well as it reduced the specific product formation of side products.
通过代谢工程,微生物可以被工程化以生产新产品,并进一步以更高的产量和生产力生产这些产品。在这里,我们在酵母酿酒酵母中表达了细菌聚羟基丁酸酯 (PHB) 途径,我们进一步评估了工程化乙酰辅酶 A (acetyl-CoA) 形成的效果,乙酰辅酶 A 是中心碳代谢的中间产物,也是 PHB 途径的前体,对酵母异源 PHB 生产的影响。我们通过共转化含有内源性酿酒酵母醇脱氢酶 (ADH2)、乙醛脱氢酶 (ALD6)、乙酰辅酶 A 乙酰转移酶 (ERG10) 和沙门氏菌乙酰辅酶 A 合成酶变体 (acsL641P) 基因的质粒来工程化乙酰辅酶 A 代谢,导致乙酰乙酰辅酶 A 过量产生,同时转化含有编码乙酰辅酶 A 乙酰转移酶 (phaA)、NADPH 连接的乙酰乙酰辅酶 A 还原酶 (phaB) 和聚(3-羟基丁酸酯)聚合酶 (phaC) 的 PHB 途径基因的质粒来自 Ralstonia eutropha H16。与本研究中使用的参考菌株相比,引入乙酰辅酶 A 质粒和 PHB 质粒一起将 PHB 的生产力提高了 16 倍以上,同时降低了副产物的特定产物形成。