Suppr超能文献

一株新型化能自养β-变形菌(菌株2002)对厌氧硝酸盐依赖的铁(II)进行生物氧化作用

Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.

作者信息

Weber Karrie A, Pollock Jarrod, Cole Kimberly A, O'Connor Susan M, Achenbach Laurie A, Coates John D

机构信息

University of California, Department of Plant and Microbial Biology, 271 Koshland Hall, Berkeley, CA, USA.

出版信息

Appl Environ Microbiol. 2006 Jan;72(1):686-94. doi: 10.1128/AEM.72.1.686-694.2006.

Abstract

Microbial nitrate-dependent Fe(II) oxidation is known to contribute to iron biogeochemical cycling; however, the microorganisms responsible are virtually unknown. In an effort to elucidate this microbial metabolic process in the context of an environmental system, a 14-cm sediment core was collected from a freshwater lake and geochemically characterized concurrently with the enumeration of the nitrate-dependent Fe(II)-oxidizing microbial community and subsequent isolation of a nitrate-dependent Fe(II)-oxidizing microorganism. Throughout the sediment core, ambient concentrations of Fe(II) and nitrate were observed to coexist. Concomitant most probable number enumeration revealed the presence of an abundant nitrate-dependent Fe(II)-oxidizing microbial community (2.4 x 10(3) to 1.5 x 10(4) cells g(-1) wet sediment) from which a novel anaerobic, lithoautotrophic, Fe(II)-oxidizing bacterium, strain 2002, was isolated. Analysis of the complete 16S rRNA gene sequence revealed that strain 2002 was a member of the beta subclass of the proteobacteria with 94.8% similarity to Chromobacterium violaceum, a bacterium not previously recognized for the ability to oxidize nitrate-dependent Fe(II). Under nongrowth conditions, both strain 2002 and C. violaceum incompletely reduced nitrate to nitrite with Fe(II) as the electron donor, while under growth conditions nitrate was reduced to gaseous end products (N2 and N2O). Lithoautotrophic metabolism under nitrate-dependent Fe(II)-oxidizing conditions was verified by the requirement of CO2 for growth as well as the assimilation of 14C-labeled CO2 into biomass. The isolation of strain 2002 represents the first example of an anaerobic, mesophilic, neutrophilic Fe(II)-oxidizing lithoautotroph isolated from freshwater samples. Our studies further demonstrate the abundance of nitrate-dependent Fe(II) oxidizers in freshwater lake sediments and provide further evidence for the potential of microbially mediated Fe(II) oxidation in anoxic environments.

摘要

已知微生物硝酸盐依赖型Fe(II)氧化作用有助于铁的生物地球化学循环;然而,对此负责的微生物实际上仍不为人所知。为了在环境系统背景下阐明这一微生物代谢过程,从一个淡水湖采集了一个14厘米长的沉积物岩芯,并对其进行了地球化学特征分析,同时对硝酸盐依赖型Fe(II)氧化微生物群落进行了计数,并随后分离出一种硝酸盐依赖型Fe(II)氧化微生物。在整个沉积物岩芯中,观察到Fe(II)和硝酸盐的环境浓度共存。伴随的最大可能数计数显示存在丰富的硝酸盐依赖型Fe(II)氧化微生物群落(2.4×10³至1.5×10⁴个细胞 g⁻¹湿沉积物),从中分离出了一种新型厌氧、化能自养、Fe(II)氧化细菌菌株2002。对完整的16S rRNA基因序列分析表明,菌株2002是变形菌纲β亚类的成员,与紫色色杆菌有94.8%的相似性,紫色色杆菌以前未被认为具有氧化硝酸盐依赖型Fe(II)的能力。在非生长条件下,菌株2002和紫色色杆菌都以Fe(II)作为电子供体将硝酸盐不完全还原为亚硝酸盐,而在生长条件下硝酸盐被还原为气态终产物(N₂和N₂O)。通过生长对CO₂的需求以及14C标记的CO₂同化为生物量,验证了硝酸盐依赖型Fe(II)氧化条件下的化能自养代谢。菌株2002的分离代表了从淡水样品中分离出的厌氧、嗜温、嗜中性Fe(II)氧化化能自养菌的首个实例。我们的研究进一步证明了淡水湖沉积物中硝酸盐依赖型Fe(II)氧化菌的丰富性,并为缺氧环境中微生物介导的Fe(II)氧化潜力提供了进一步证据。

相似文献

1
Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.
Appl Environ Microbiol. 2006 Jan;72(1):686-94. doi: 10.1128/AEM.72.1.686-694.2006.
3
Repeated anaerobic microbial redox cycling of iron.
Appl Environ Microbiol. 2011 Sep;77(17):6036-42. doi: 10.1128/AEM.00276-11. Epub 2011 Jul 8.
4
Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial subdivision lineage TM3.
ISME J. 2013 Aug;7(8):1582-94. doi: 10.1038/ismej.2013.38. Epub 2013 Mar 21.
5
Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.02013-17. Print 2018 Jan 15.
6
Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002.
Appl Microbiol Biotechnol. 2009 Jun;83(3):555-65. doi: 10.1007/s00253-009-1934-7. Epub 2009 Mar 31.
7
Anaerobic redox cycling of iron by freshwater sediment microorganisms.
Environ Microbiol. 2006 Jan;8(1):100-13. doi: 10.1111/j.1462-2920.2005.00873.x.
8
Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria.
FEMS Microbiol Ecol. 2009 Dec;70(3):335-43. doi: 10.1111/j.1574-6941.2009.00755.x. Epub 2009 Aug 3.
10
Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes.
Appl Environ Microbiol. 2022 May 24;88(10):e0013222. doi: 10.1128/aem.00132-22. Epub 2022 May 2.

引用本文的文献

1
New Estimates of Nitrogen Fixation on Early Earth.
Life (Basel). 2024 May 8;14(5):601. doi: 10.3390/life14050601.
2
Electrochemically coupled CH and CO consumption driven by microbial processes.
Nat Commun. 2024 Apr 10;15(1):3097. doi: 10.1038/s41467-024-47445-8.
4
Nitrate leaching and its implication for Fe and As mobility in a Southeast Asian aquifer.
FEMS Microbiol Ecol. 2023 Mar 23;99(4). doi: 10.1093/femsec/fiad025.
6
Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes.
Appl Environ Microbiol. 2022 May 24;88(10):e0013222. doi: 10.1128/aem.00132-22. Epub 2022 May 2.
7
Oligotrophic Growth of Nitrate-Dependent Fe-Oxidising Microorganisms Under Simulated Early Martian Conditions.
Front Microbiol. 2022 Mar 28;13:800219. doi: 10.3389/fmicb.2022.800219. eCollection 2022.
8
Microbial processes during deposition and diagenesis of Banded Iron Formations.
Palaontol Z. 2021;95(4):593-610. doi: 10.1007/s12542-021-00598-z. Epub 2021 Dec 8.
10
Controls of HS, Fe, and Mn on Microbial NO -Reducing Processes in Sediments of an Eutrophic Lake.
Front Microbiol. 2020 Jun 16;11:1158. doi: 10.3389/fmicb.2020.01158. eCollection 2020.

本文引用的文献

2
Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria.
Geochim Cosmochim Acta. 2010 May 10;74(10):2826-2842. doi: 10.1016/j.gca.2010.02.017.
3
Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.
Appl Environ Microbiol. 1996 Apr;62(4):1458-60. doi: 10.1128/aem.62.4.1458-1460.1996.
4
Rapid assay for microbially reducible ferric iron in aquatic sediments.
Appl Environ Microbiol. 1987 Jul;53(7):1536-40. doi: 10.1128/aem.53.7.1536-1540.1987.
5
Denitrification by Chromobacterium violaceum.
Appl Environ Microbiol. 1986 Oct;52(4):696-9. doi: 10.1128/aem.52.4.696-699.1986.
6
Anaerobic redox cycling of iron by freshwater sediment microorganisms.
Environ Microbiol. 2006 Jan;8(1):100-13. doi: 10.1111/j.1462-2920.2005.00873.x.
7
Graphite electrodes as electron donors for anaerobic respiration.
Environ Microbiol. 2004 Jun;6(6):596-604. doi: 10.1111/j.1462-2920.2004.00593.x.
10
Nitrate controls on iron and arsenic in an urban lake.
Science. 2002 Jun 28;296(5577):2373-6. doi: 10.1126/science.1072402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验