Kappler A, Johnson C M, Crosby H A, Beard B L, Newman D K
GPS Division, California Institute of Technology, Pasadena, CA 91125.
Geochim Cosmochim Acta. 2010 May 10;74(10):2826-2842. doi: 10.1016/j.gca.2010.02.017.
Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)(aq) and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in (56)Fe/(54)Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ(56)Fe(Fe(OH)3 - Fe(II)aq) fractionation factor of +3.0 ‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)(aq) and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)(aq) by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)(aq) oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)(aq) and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and abiological Fe(II) oxidation.
化学和生物Fe(II)氧化过程中产生的铁同位素分馏对溶解态和固相铁物种的比例及性质,以及沉淀物与水相铁之间的同位素交换程度敏感。因此,铁同位素有可能限制现代和古代环境中铁氧化还原转化的机制和途径。在本研究中,我们通过分批实验追踪了由包被铁(III)矿物、还原硝酸盐、氧化Fe(II)的嗜酸菌酸食菌属菌株BoFeN1产生的Fe(II)(aq)与Fe(III)氧化物/氢氧化物沉淀物之间的铁同位素分馏。(56)Fe/(54)Fe的同位素分馏接近平衡条件下预期的值,假设平衡Δ(56)Fe(Fe(OH)3 - Fe(II)aq)分馏系数为+3.0‰。先前的研究表明,该嗜酸菌菌株对Fe(II)的氧化发生在周质中,我们提出通过周质所含环境中Fe(II)(aq)与Fe(III)沉淀物之间的耦合电子和原子交换进行氧化还原循环来维持铁同位素平衡。除了明显的平衡同位素分馏外,这些实验还记录了初始快速氧化的动力学效应以及Fe(III)沉淀物可能的相变。嗜中性、氧化Fe(II)的细菌或通过非生物Fe(II)(aq)氧化在Fe(III)氧化物/氢氧化物沉淀物与Fe(II)(aq)之间达到铁同位素平衡通常是无法预期或观察到的,因为它们代谢产物Fe(III)的低溶解度通常会导致Fe(III)矿物快速沉淀,从而在沉淀时表现出动力学分馏;在Fe(II)(aq)与沉淀物之间不存在氧化还原循环的情况下,动力学同位素分馏可能会保留下来。这些结果突出了生物和非生物Fe(II)氧化的不同途径所产生的独特铁同位素分馏。