Kumar V Senthil, Kumaran V
Department of Chemical Engineering, Indian Institute of Science, Bangalore, India.
J Chem Phys. 2005 Sep 15;123(11):114501. doi: 10.1063/1.2011390.
The Voronoi cell volume distributions for hard-disk and hard-sphere fluids have been studied. The distribution of the Voronoi free volume vf, which is the difference between the actual cell volume and the minimal cell volume at close packing, is well described by a two-parameter (2gamma) or a three-parameter (3gamma) gamma distribution. The free parameter m in both the 2gamma and 3gamma models is identified as the "regularity factor." The regularity factor is the ratio of the square of the mean and the variance of the free volume distribution, and it increases as the cell volume distribution becomes narrower. For the thermodynamic structures, the regularity factor increases with increasing density and it increases sharply across the freezing transition, in response to the onset of order. The regularity factor also distinguishes between the dense thermodynamic structures and the dense random or quenched structures. The maximum information entropy (max-ent) formalism, when applied to the gamma distributions, shows that structures of maximum information entropy have an exponential distribution of vf. Simulations carried out using a swelling algorithm indicate that the dense random-packed states approach the distribution predicted by the max-ent formalism, though the limiting case could not be realized in simulations due to the structural inhomogeneities introduced by the dense random-packing algorithm. Using the gamma representations of the cell volume distribution, we check the numerical validity of the Cohen-Grest expression [M. H. Cohen and G. S. Grest, Phys. Rev. B 20, 1077 (1979)] for the cellular (free volume) entropy, which is a part of the configurational entropy. The expression is exact for the hard-rod system, and a correction factor equal to the dimension of the system, D, is found necessary for the hard-disk and hard-sphere systems. Thus, for the hard-disk and hard-sphere systems, the present analysis establishes a relationship between the precisely defined Voronoi free volume (information) entropy and the thermodynamic entropy. This analysis also shows that the max-ent formalism, when applied to the free volume entropy, predicts an exponential distribution which is approached by disordered states generated by a swelling algorithm in the dense random-packing limit.
人们已经研究了硬盘流体和硬球流体的Voronoi胞体积分布。Voronoi自由体积vf(即实际胞体积与紧密堆积时最小胞体积之差)的分布可以很好地用双参数(2γ)或三参数(3γ)伽马分布来描述。2γ和3γ模型中的自由参数m被确定为“规整度因子”。规整度因子是自由体积分布的均值平方与方差之比,并且随着胞体积分布变窄而增大。对于热力学结构,规整度因子随着密度的增加而增大,并且在凝固转变时随着有序的开始而急剧增大。规整度因子还区分了致密的热力学结构与致密的随机或淬火结构。当将最大信息熵(max-ent)形式体系应用于伽马分布时,结果表明具有最大信息熵的结构具有vf的指数分布。使用膨胀算法进行的模拟表明,致密随机堆积状态接近由max-ent形式体系预测的分布,尽管由于致密随机堆积算法引入的结构不均匀性,在模拟中无法实现极限情况。使用胞体积分布的伽马表示,我们检验了Cohen-Grest表达式[M. H. Cohen和G. S. Grest,《物理评论B》20,1077(1979)]对于胞(自由体积)熵(它是构型熵的一部分)的数值有效性。该表达式对于硬棒系统是精确的,并且发现对于硬盘和硬球系统,需要一个等于系统维度D的校正因子。因此,对于硬盘和硬球系统,本分析建立了精确定义的Voronoi自由体积(信息)熵与热力学熵之间的关系。该分析还表明,当将max-ent形式体系应用于自由体积熵时,它预测了一种指数分布,在致密随机堆积极限下由膨胀算法产生的无序状态会趋近于这种分布。