Kumar V Senthil, Kumaran V
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India.
J Chem Phys. 2005 Aug 15;123(7):074502. doi: 10.1063/1.2000233.
The neighbor distribution in hard-sphere and hard-disk fluids is analyzed using Voronoi tessellation. The statistical measures analyzed are the nth neighbor coordination number (Cn), the nth neighbor distance distribution [fn(r)], and the distribution of the number of Voronoi faces (Pn). These statistics are sensitive indicators of microstructure, and they distinguish thermodynamic and annealed structures. A sharp rise in the hexagon population marks the onset of hard-disk freezing transition, and Cn decreases sharply to the hexagonal lattice values. In hard-disk random structures the pentagon and heptagon populations remain significant even at high volume fraction. In dense hard-sphere (three-dimensional) structures at the freezing transition, C1 is close to 14, instead of the value of 12 expected for a face-centered-cubic lattice. This is found to be because of a topological instability, where a slight perturbation of the positions in the centers of a pair of particles transforms a vertex in the Voronoi polyhedron into a Voronoi surface. We demonstrate that the pair distribution function and the equation-of-state obtained from Voronoi tessellation are equal to those obtained from thermodynamic calculations. In hard-sphere random structures, the dodecahedron population decreases with increasing density. To demonstrate the utility of the neighbor analysis, we estimate the effective hard-sphere diameter of the Lennard-Jones fluid by identifying the diameter of the spheres in the hard-sphere fluid which has C1 equal to that for the Lennard-Jones fluid. The estimates are within 2% deviation from the theoretical results of Barker-Henderson and Weeks-Chandler-Andersen.
使用Voronoi镶嵌来分析硬球和硬盘流体中的邻居分布。所分析的统计量包括第n个邻居配位数(Cn)、第n个邻居距离分布[fn(r)]以及Voronoi面数的分布(Pn)。这些统计量是微观结构的敏感指标,它们能够区分热力学结构和退火结构。六边形数量的急剧增加标志着硬盘冻结转变的开始,并且Cn急剧下降至六边形晶格值。在硬盘随机结构中,即使在高体积分数下,五边形和七边形的数量仍然可观。在冻结转变时的致密硬球(三维)结构中,C1接近14,而不是面心立方晶格预期的12值。发现这是由于拓扑不稳定性,即一对粒子中心位置的轻微扰动会将Voronoi多面体中的一个顶点转变为一个Voronoi面。我们证明,从Voronoi镶嵌得到的对分布函数和状态方程与从热力学计算得到的相等。在硬球随机结构中,十二面体的数量随着密度的增加而减少。为了证明邻居分析的实用性,我们通过确定硬球流体中C1与Lennard-Jones流体相等时的球体直径,来估计Lennard-Jones流体的有效硬球直径。这些估计值与Barker-Henderson和Weeks-Chandler-Andersen的理论结果偏差在2%以内。