Stern Hal S
Department of Statistics, University of California, Irvine, Irvine, CA 92967-1250, USA.
Psychol Methods. 2005 Dec;10(4):494-9. doi: 10.1037/1082-989X.10.4.494.
I. Klugkist, O. Laudy, and H. Hoijtink (2005) presented a Bayesian approach to analysis of variance models with inequality constraints. Constraints may play 2 distinct roles in data analysis. They may represent prior information that allows more precise inferences regarding parameter values, or they may describe a theory to be judged against the data. In the latter case, the authors emphasized the use of Bayes factors and posterior model probabilities to select the best theory. One difficulty is that interpretation of the posterior model probabilities depends on which other theories are included in the comparison. The posterior distribution of the parameters under an unconstrained model allows one to quantify the support provided by the data for inequality constraints without requiring the model selection framework.
I. 克鲁格基斯特、O. 劳迪和H. 霍伊廷克(2005年)提出了一种用于分析具有不等式约束的方差模型的贝叶斯方法。约束在数据分析中可能发挥两种不同的作用。它们可能代表先验信息,从而允许对参数值进行更精确的推断,或者它们可能描述一种有待根据数据进行判断的理论。在后一种情况下,作者强调使用贝叶斯因子和后验模型概率来选择最佳理论。一个困难在于,后验模型概率的解释取决于比较中包含的其他哪些理论。无约束模型下参数的后验分布使人们能够在不需要模型选择框架的情况下量化数据对不等式约束提供的支持。