Hou Tingjun, McLaughlin William, Lu Benzhuo, Chen Ken, Wang Wei
Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0319, USA.
J Proteome Res. 2006 Jan;5(1):32-43. doi: 10.1021/pr0502267.
The SH3 domain of the human protein amphiphysin-1, which plays important roles in clathrin-mediated endocytosis, actin function and signaling transduction, can recognize peptide motif PXRPXR (X is any amino acid) with high affinity and specificity. We have constructed a complex structure of the amphiphysin-1 SH3 domain and a high-affinity peptide ligand PLPRRPPRA using homology modeling and molecular docking, which was optimized by molecular dynamics (MD). Three-dimensional quantitative structure-affinity relationship (3D-QSAR) analyses on the 200 peptides with known binding affinities to the amphiphysin-1 SH3 domain was then performed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best CoMSIA model showed promising predictive power, giving good predictions for about 95% of the peptides in the test set (absolute prediction errors less than 1.0). It was used to validate peptide-SH3 binding structure and provide insight into the structural requirements for binding of peptides to SH3 domains. Finally, MD simulations were performed to analyze the interaction between the SH3 domain and another peptide GFPRRPPPRG that contains with the PXRPXsR (s represents residues with small side chains) motif. MD simulations demonstrated that the binding conformation of GFPRRPPPRG is quite different from that of PLPRRPPRAA especially the four residues at the C terminal, which may explain why the CoMSIA model cannot give good predictions on the peptides of the PXRPXsR motif. Because of its efficiency and predictive power, the 3D-QSAR model can be used as a scoring filter for predicting peptide sequences bound to SH3 domains.
人发动蛋白-1的SH3结构域在网格蛋白介导的内吞作用、肌动蛋白功能及信号转导中发挥重要作用,它能以高亲和力和特异性识别肽基序PXRPXR(X为任意氨基酸)。我们利用同源建模和分子对接构建了发动蛋白-1的SH3结构域与高亲和力肽配体PLPRRPPRA的复合物结构,并通过分子动力学(MD)进行了优化。随后,使用比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)对200个与发动蛋白-1的SH3结构域具有已知结合亲和力的肽进行了三维定量构效关系(3D-QSAR)分析。最佳的CoMSIA模型显示出良好的预测能力,对测试集中约95%的肽给出了良好预测(绝对预测误差小于1.0)。它被用于验证肽与SH3的结合结构,并深入了解肽与SH3结构域结合的结构要求。最后,进行了分子动力学模拟,以分析SH3结构域与另一个含有PXRPXsR(s代表小侧链残基)基序的肽GFPRRPPPRG之间的相互作用。分子动力学模拟表明,GFPRRPPPRG的结合构象与PLPRRPPRAA的有很大不同,尤其是C末端的四个残基,这可能解释了为什么CoMSIA模型对PXRPXsR基序的肽不能给出良好预测。由于其效率和预测能力,3D-QSAR模型可作为一种评分过滤器,用于预测与SH3结构域结合的肽序列。