Suppr超能文献

结构域-肽相互作用界面的表征:以发动蛋白-1 SH3结构域为例的研究

Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.

作者信息

Hou Tingjun, Zhang Wei, Case David A, Wang Wei

机构信息

Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA.

出版信息

J Mol Biol. 2008 Feb 29;376(4):1201-14. doi: 10.1016/j.jmb.2007.12.054. Epub 2008 Jan 3.

Abstract

Many important protein-protein interactions are mediated by peptide recognition modular domains, such as the Src homology 3 (SH3), SH2, PDZ, and WW domains. Characterizing the interaction interface of domain-peptide complexes and predicting binding specificity for modular domains are critical for deciphering protein-protein interaction networks. Here, we propose the use of an energetic decomposition analysis to characterize domain-peptide interactions and the molecular interaction energy components (MIECs), including van der Waals, electrostatic, and desolvation energy between residue pairs on the binding interface. We show a proof-of-concept study on the amphiphysin-1 SH3 domain interacting with its peptide ligands. The structures of the human amphiphysin-1 SH3 domain complexed with 884 peptides were first modeled using virtual mutagenesis and optimized by molecular mechanics (MM) minimization. Next, the MIECs between domain and peptide residues were computed using the MM/generalized Born decomposition analysis. We conducted two types of statistical analyses on the MIECs to demonstrate their usefulness for predicting binding affinities of peptides and for classifying peptides into binder and non-binder categories. First, combining partial least squares analysis and genetic algorithm, we fitted linear regression models between the MIECs and the peptide binding affinities on the training data set. These models were then used to predict binding affinities for peptides in the test data set; the predicted values have a correlation coefficient of 0.81 and an unsigned mean error of 0.39 compared with the experimentally measured ones. The partial least squares-genetic algorithm analysis on the MIECs revealed the critical interactions for the binding specificity of the amphiphysin-1 SH3 domain. Next, a support vector machine (SVM) was employed to build classification models based on the MIECs of peptides in the training set. A rigorous training-validation procedure was used to assess the performances of different kernel functions in SVM and different combinations of the MIECs. The best SVM classifier gave satisfactory predictions for the test set, indicated by average prediction accuracy rates of 78% and 91% for the binding and non-binding peptides, respectively. We also showed that the performance of our approach on both binding affinity prediction and binder/non-binder classification was superior to the performances of the conventional MM/Poisson-Boltzmann solvent-accessible surface area and MM/generalized Born solvent-accessible surface area calculations. Our study demonstrates that the analysis of the MIECs between peptides and the SH3 domain can successfully characterize the binding interface, and it provides a framework to derive integrated prediction models for different domain-peptide systems.

摘要

许多重要的蛋白质-蛋白质相互作用是由肽识别模块结构域介导的,例如Src同源结构域3(SH3)、SH2、PDZ和WW结构域。表征结构域-肽复合物的相互作用界面并预测模块结构域的结合特异性对于解读蛋白质-蛋白质相互作用网络至关重要。在此,我们提出使用能量分解分析来表征结构域-肽相互作用以及分子相互作用能量成分(MIECs),包括结合界面上残基对之间的范德华力、静电力和去溶剂化能。我们展示了一项关于发动蛋白-1 SH3结构域与其肽配体相互作用的概念验证研究。首先使用虚拟诱变对与884种肽复合的人发动蛋白-1 SH3结构域的结构进行建模,并通过分子力学(MM)最小化进行优化。接下来,使用MM/广义玻恩分解分析计算结构域和肽残基之间的MIECs。我们对MIECs进行了两种类型的统计分析,以证明它们在预测肽的结合亲和力以及将肽分类为结合剂和非结合剂类别方面的有用性。首先,结合偏最小二乘分析和遗传算法,我们在训练数据集上拟合了MIECs与肽结合亲和力之间的线性回归模型。然后使用这些模型预测测试数据集中肽的结合亲和力;与实验测量值相比,预测值的相关系数为0.81,无符号平均误差为0.39。对MIECs的偏最小二乘-遗传算法分析揭示了发动蛋白-1 SH3结构域结合特异性的关键相互作用。接下来,使用支持向量机(SVM)基于训练集中肽的MIECs构建分类模型。采用严格的训练-验证程序来评估SVM中不同核函数以及MIECs的不同组合的性能。最佳的SVM分类器对测试集给出了令人满意的预测,结合肽和非结合肽的平均预测准确率分别为78%和91%。我们还表明,我们的方法在结合亲和力预测和结合剂/非结合剂分类方面的性能优于传统的MM/泊松-玻尔兹曼溶剂可及表面积和MM/广义玻恩溶剂可及表面积计算方法。我们的研究表明,对肽与SH3结构域之间的MIECs进行分析能够成功地表征结合界面,并提供了一个框架来推导针对不同结构域-肽系统的综合预测模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验