Fullerton Stephen W B, Griffiths Jennifer S, Merkel Alexandra B, Cheriyan Manoj, Wymer Nathan J, Hutchins Michael J, Fierke Carol A, Toone Eric J, Naismith James H
Centre for Biomolecular Sciences, The University of St Andrews, St Andrews, KY16 9ST, UK.
Bioorg Med Chem. 2006 May 1;14(9):3002-10. doi: 10.1016/j.bmc.2005.12.022. Epub 2006 Jan 5.
In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.
在体内,2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG)醛缩酶催化KDPG可逆、立体特异性的逆醛醇裂解反应,生成丙酮酸和D-甘油醛-3-磷酸。该酶是一种依赖赖氨酸的(I类)醛缩酶,通过席夫碱中间体发挥作用。在此,我们基于野生型和突变型醛缩酶的晶体学研究提出了该酶的作用机制。嗜热栖热菌的KDPG醛缩酶的三维结构已确定为1.9埃。该结构是所有I类醛缩酶中常见的标准α/β桶状结构。在活性位点赖氨酸处,我们观察到丙酮酸席夫碱有清晰的电子密度。在靠近席夫碱的保守残基簇中还观察到结合硫酸根离子的电子密度。我们还确定了大肠杆菌KDPG醛缩酶的一个突变体的结构,该突变体中假定的广义酸碱催化剂已被去除(E45N)。三聚体的一个亚基含有表明捕获了丙酮酸甲醇胺中间体的电子密度。所有三个亚基都含有一个磷酸根离子,其结合位置与栖热菌酶中结合的硫酸根离子的位置基本相同。硫酸根离子和磷酸根离子通过实验确定了醛缩酶的假定磷酸结合位点,并与结合的丙酮酸的位置一起,有助于构建全长KDPG底物复合物的模型。该模型仅需对实验确定的共价中间体和结合阴离子进行最小程度的位置调整,即可容纳全长底物。该模型确定了蛋白质的关键催化残基,并表明两个可观察到的水分子具有重要作用。第一个水分子在整个催化循环中一直与酶结合,在催化性谷氨酸和底物之间穿梭质子。第二个水分子由甲醇胺脱水产生,在酶-产物席夫碱水解过程中作为亲核水。第二个水分子也可能介导形成碳亲核试剂所需的碱催化烯醇化反应,同样与催化性谷氨酸相连。该机制的许多方面在其他I类醛缩酶中也有观察到,表明存在一个在机制上或许在进化上相关的醛缩酶家族,与N-乙酰神经氨酸裂解酶(NAL)家族不同。