Suppr超能文献

通过计算设计的mRNA启动的蛋白质纳米颗粒疫苗。

Computationally designed mRNA-launched protein nanoparticle vaccines.

作者信息

Hendricks Grace G, Grigoryan Lilit, Navarro Mary Jane, Catanzaro Nicholas J, Hubbard Miranda L, Powers John M, Mattocks Melissa, Treichel Catherine, Walls Alexandra C, Lee Jimin, Ellis Daniel, Wang Jing Yang John, Cheng Suna, Miranda Marcos C, Valdez Adian, Chao Cara W, Chan Sidney, Men Christine, Johnson Max R, Hui Harold, Wu Sheng-Yang, Lujan Victor, Muramatsu Hiromi, Lin Paulo J C, Sung Molly M H, Tam Ying K, Leaf Elizabeth M, Pardi Norbert, Baric Ralph S, Pulendran Bali, Veesler David, Schäfer Alexandra, King Neil P

机构信息

Institute for Protein Design, University of Washington, Seattle, WA, USA.

Department of Biochemistry, University of Washington, Seattle, WA, USA.

出版信息

bioRxiv. 2024 Jul 23:2024.07.22.604655. doi: 10.1101/2024.07.22.604655.

Abstract

Both protein nanoparticle and mRNA vaccines were clinically de-risked during the COVID-19 pandemic. These vaccine modalities have complementary strengths: antigen display on protein nanoparticles can enhance the magnitude, quality, and durability of antibody responses, while mRNA vaccines can be rapidly manufactured and elicit antigen-specific CD4 and CD8 T cells. Here we leverage a computationally designed icosahedral protein nanoparticle that was redesigned for optimal secretion from eukaryotic cells to develop an mRNA-launched nanoparticle vaccine for SARS-CoV-2. The nanoparticle, which displays 60 copies of a stabilized variant of the Wuhan-Hu-1 Spike receptor binding domain (RBD), formed monodisperse, antigenically intact assemblies upon secretion from transfected cells. An mRNA vaccine encoding the secreted RBD nanoparticle elicited 5- to 28-fold higher levels of neutralizing antibodies than an mRNA vaccine encoding membrane-anchored Spike, induced higher levels of CD8 T cells than the same immunogen when delivered as an adjuvanted protein nanoparticle, and protected mice from vaccine-matched and -mismatched SARS-CoV-2 challenge. Our data establish that delivering protein nanoparticle immunogens via mRNA vaccines can combine the benefits of each modality and, more broadly, highlight the utility of computational protein design in genetic immunization strategies.

摘要

在新冠疫情期间,蛋白质纳米颗粒疫苗和mRNA疫苗在临床上都降低了风险。这些疫苗形式具有互补优势:蛋白质纳米颗粒上的抗原展示可增强抗体反应的强度、质量和持久性,而mRNA疫苗能够快速生产并引发抗原特异性CD4和CD8 T细胞反应。在此,我们利用一种通过计算设计的二十面体蛋白质纳米颗粒,该纳米颗粒经过重新设计以实现从真核细胞的最佳分泌,从而开发出一种针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的mRNA启动的纳米颗粒疫苗。该纳米颗粒展示了60个拷贝的武汉-1型刺突蛋白受体结合域(RBD)的稳定变体,从转染细胞分泌后形成单分散、抗原完整的聚集体。一种编码分泌型RBD纳米颗粒的mRNA疫苗引发的中和抗体水平比编码膜锚定刺突蛋白的mRNA疫苗高5至28倍,与作为佐剂蛋白质纳米颗粒递送时的相同免疫原相比,诱导产生更高水平的CD8 T细胞,并保护小鼠免受与疫苗匹配和不匹配的SARS-CoV-2攻击。我们的数据表明,通过mRNA疫苗递送蛋白质纳米颗粒免疫原可以结合每种疫苗形式的优势,更广泛地说,突出了计算蛋白质设计在基因免疫策略中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b20/11291046/52eb86987999/nihpp-2024.07.22.604655v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验