Suppr超能文献

通过扫描探针显微镜对生物材料进行机电成像。

Electromechanical imaging of biomaterials by scanning probe microscopy.

作者信息

Rodriguez B J, Kalinin S V, Shin J, Jesse S, Grichko V, Thundat T, Baddorf A P, Gruverman A

机构信息

Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

出版信息

J Struct Biol. 2006 Feb;153(2):151-9. doi: 10.1016/j.jsb.2005.10.008. Epub 2005 Dec 9.

Abstract

The majority of calcified and connective tissues possess complex hierarchical structure spanning the length scales from nanometers to millimeters. Understanding the biological functionality of these materials requires reliable methods for structural imaging on the nanoscale. Here, we demonstrate an approach for electromechanical imaging of the structure of biological samples on the length scales from tens of microns to nanometers using piezoresponse force microscopy (PFM), which utilizes the intrinsic piezoelectricity of biopolymers such as proteins and polysaccharides as the basis for high-resolution imaging. Nanostructural imaging of a variety of protein-based materials, including tooth, antler, and cartilage, is demonstrated. Visualization of protein fibrils with sub-10nm spatial resolution in a human tooth is achieved. Given the near-ubiquitous presence of piezoelectricity in biological systems, PFM is suggested as a versatile tool for micro- and nanostructural imaging in both connective and calcified tissues.

摘要

大多数钙化组织和结缔组织具有跨越从纳米到毫米长度尺度的复杂层次结构。了解这些材料的生物学功能需要在纳米尺度上进行可靠的结构成像方法。在这里,我们展示了一种使用压电力显微镜(PFM)在从几十微米到纳米的长度尺度上对生物样品结构进行机电成像的方法,该方法利用蛋白质和多糖等生物聚合物的固有压电性作为高分辨率成像的基础。展示了对包括牙齿、鹿角和软骨在内的多种基于蛋白质的材料的纳米结构成像。在人类牙齿中实现了对空间分辨率低于10nm的蛋白质原纤维的可视化。鉴于压电性在生物系统中几乎无处不在,PFM被认为是用于结缔组织和钙化组织中微观和纳米结构成像的通用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验