Ni Xiyao, Cui Yufei, Salehi Mojtaba, Nai Mui Ling Sharon, Zhou Kun, Vyas Cian, Huang Boyang, Bartolo Paulo
Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Additive Manufacturing Division, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore, 636732, Singapore.
Adv Sci (Weinh). 2025 Aug;12(32):e14969. doi: 10.1002/advs.202414969. Epub 2025 Jun 19.
Piezoelectric biomaterials convert mechanical energy into electrical charges, making them promising candidates for bone tissue engineering by restoring and modulating the electrophysiological microenvironment. This review explores the development of piezoelectric biomaterials by focusing on their molecular origins, particularly dipoles, and how their type, source, and spatial arrangement influence macroscopic electromechanical coupling. Beyond intrinsic origins, the concept of pseudo-piezoelectricity driven by extrinsic factors is introduced to highlight alternative approaches for piezoelectric biomaterial design. Techniques to engineer dipoles and modulate piezoelectric properties for the regulation of osteogenesis are discussed. Particular attention is given to the correlation between piezoelectricity and osteogenesis at distinct phases of bone regeneration. Finally, current challenges in molecular understanding and biofabrication of piezoelectric bone scaffolds are highlighted, along with potential future research directions.
压电生物材料可将机械能转化为电荷,通过恢复和调节电生理微环境,使其成为骨组织工程中很有前景的候选材料。本综述通过聚焦压电生物材料的分子起源,特别是偶极子,以及它们的类型、来源和空间排列如何影响宏观机电耦合,来探讨压电生物材料的发展。除了固有起源外,还引入了由外在因素驱动的假压电概念,以突出压电生物材料设计的替代方法。讨论了设计偶极子和调节压电性能以调控成骨的技术。特别关注骨再生不同阶段压电性与成骨之间的相关性。最后,强调了目前在压电骨支架的分子理解和生物制造方面面临的挑战以及潜在的未来研究方向。
Adv Sci (Weinh). 2025-8
Int J Biol Macromol. 2023-2-28
J Nanobiotechnology. 2025-7-26
Adv Sci (Weinh). 2025-8-18
ACS Appl Mater Interfaces. 2024-1-17
Adv Mater. 2024-2