文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于骨再生的压电生物材料:从偶极到骨生成的路线图

Piezoelectric Biomaterials for Bone Regeneration: Roadmap from Dipole to Osteogenesis.

作者信息

Ni Xiyao, Cui Yufei, Salehi Mojtaba, Nai Mui Ling Sharon, Zhou Kun, Vyas Cian, Huang Boyang, Bartolo Paulo

机构信息

Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

Additive Manufacturing Division, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore, 636732, Singapore.

出版信息

Adv Sci (Weinh). 2025 Aug;12(32):e14969. doi: 10.1002/advs.202414969. Epub 2025 Jun 19.


DOI:10.1002/advs.202414969
PMID:40536423
Abstract

Piezoelectric biomaterials convert mechanical energy into electrical charges, making them promising candidates for bone tissue engineering by restoring and modulating the electrophysiological microenvironment. This review explores the development of piezoelectric biomaterials by focusing on their molecular origins, particularly dipoles, and how their type, source, and spatial arrangement influence macroscopic electromechanical coupling. Beyond intrinsic origins, the concept of pseudo-piezoelectricity driven by extrinsic factors is introduced to highlight alternative approaches for piezoelectric biomaterial design. Techniques to engineer dipoles and modulate piezoelectric properties for the regulation of osteogenesis are discussed. Particular attention is given to the correlation between piezoelectricity and osteogenesis at distinct phases of bone regeneration. Finally, current challenges in molecular understanding and biofabrication of piezoelectric bone scaffolds are highlighted, along with potential future research directions.

摘要

压电生物材料可将机械能转化为电荷,通过恢复和调节电生理微环境,使其成为骨组织工程中很有前景的候选材料。本综述通过聚焦压电生物材料的分子起源,特别是偶极子,以及它们的类型、来源和空间排列如何影响宏观机电耦合,来探讨压电生物材料的发展。除了固有起源外,还引入了由外在因素驱动的假压电概念,以突出压电生物材料设计的替代方法。讨论了设计偶极子和调节压电性能以调控成骨的技术。特别关注骨再生不同阶段压电性与成骨之间的相关性。最后,强调了目前在压电骨支架的分子理解和生物制造方面面临的挑战以及潜在的未来研究方向。

相似文献

[1]
Piezoelectric Biomaterials for Bone Regeneration: Roadmap from Dipole to Osteogenesis.

Adv Sci (Weinh). 2025-8

[2]
3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration.

Int J Biol Macromol. 2023-2-28

[3]
Extracellular Vesicle-Integrated Biomaterials in Bone Tissue Engineering Applications: Current Progress and Future Perspectives.

Int J Nanomedicine. 2025-6-17

[4]
From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials.

Adv Mater. 2025-5-28

[5]
Advanced therapeutic scaffolds of biomimetic periosteum for functional bone regeneration.

J Nanobiotechnology. 2025-7-26

[6]
Advances in Electrical Materials for Bone and Cartilage Regeneration: Developments, Challenges, and Perspectives.

Adv Sci (Weinh). 2025-2-14

[7]
Open Challenges and Opportunities in Piezoelectricity for Tissue Regeneration.

Adv Sci (Weinh). 2025-8-18

[8]
The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review.

J Biomater Appl. 2016-11

[9]
A new paradigm in bone tissue biomaterials: Enhanced osteogenesis-angiogenic coupling by targeting H-type blood vessels.

Biomaterials. 2026-1

[10]
Unlocking the regenerative properties of extraembryonic membrane-derived biomaterials in tissue engineering.

Acta Biomater. 2025-7-16

本文引用的文献

[1]
Synergistic effect of ultrasound and reinforced electrical environment by bioinspired periosteum for enhanced osteogenesis via immunomodulation of macrophage polarization through Piezo1.

Mater Today Bio. 2024-7-5

[2]
Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology.

Adv Mater. 2024-8

[3]
Biodegradable Ferroelectric Molecular Plastic Crystal HOCH(CF)CHOH Structurally Inspired by Polyvinylidene Fluoride.

Adv Mater. 2024-8

[4]
Biodegradable ferroelectric molecular crystal with large piezoelectric response.

Science. 2024-3-29

[5]
Piezoelectrically and Topographically Engineered Scaffolds for Accelerating Bone Regeneration.

ACS Appl Mater Interfaces. 2024-1-17

[6]
Biodegradable Nanofiber Bone-Tissue Scaffold as Remotely-Controlled and Self-Powering Electrical Stimulator.

Nano Energy. 2020-10

[7]
Temporal Immunomodulation via Wireless Programmed Electric Cues Achieves Optimized Diabetic Bone Regeneration.

ACS Nano. 2023-11-28

[8]
Observation of Ferroelectric Lithography on Biodegradable PLA Films.

Adv Mater. 2024-2

[9]
Piezoelectricity, Pyroelectricity, and Ferroelectricity in Biomaterials and Biomedical Applications.

Adv Mater. 2024-1

[10]
Thermo-mechanical characterization of electrospun polyurethane/carbon-nanotubes nanofibers: a comparative study.

Sci Rep. 2023-10-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索